精英家教網 > 初中數學 > 題目詳情
如圖1,拋物線y=ax2-3ax+b經過A(-1,0),C(3,2)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線y=kx-1(k≠0)將四邊形ABCD面積二等分,求k的值;
(3)如圖2,過點E(1,-1)作EF⊥x軸于點F,將△AEF繞平面內某點旋轉180°后得△MNQ(點M,N,Q分別與點A,E,F對應),使點M,N在拋物線上,求點M,N的坐標.

【答案】分析:首先把已知坐標代入解析式求出拋物線解析式.然后作輔助線過點C作CH⊥AB于點H,得出四邊形ABCD是等腰梯形,由矩形的中心對稱性得出過P點且與CD相交的任一直線將梯形ABCD的面積平分.設M(m,n),N(m-2,n+1)利用等式關系求出m,n的值后即可.
解答:解:(1)∵拋物線y=ax2-3ax+b過A(-1,0)、C(3,2),
∴0=a+3a+b,2=9a-9a+b.
解得a=-,b=2,
∴拋物線解析式y(tǒng)=-x2+x+2.

(2)如圖1,過點C作CH⊥AB于點H,
由y=-x2+x+2得B(4,0)、D(0,2).
又∵A(-1,0),C(3,2),
∴CD∥AB.
由拋物線的對稱性得四邊形ABCD是等腰梯形,
∴S△AOD=S△BHC
設矩形ODCH的對稱中心為P,則P(,1).
由矩形的中心對稱性知:過P點任一直線將它的面積平分.
∴過P點且與CD相交的任一直線將梯形ABCD的面積平分.
當直線y=kx-1經過點P時,
得1=k-1
∴k=
∴當k=時,直線y=x-1將四邊形ABCD面積二等分.

(3)如圖2,由題意知,四邊形AEMN為平行四邊形,
∴AN∥EM且AN=EM.
∵E(1,-1)、A(-1,0),
∴設M(m,n),則N(m-2,n+1)
∵M、N在拋物線上,
∴n=-m2+m+2,n+1=-(m-2)2+(m-2)+2,
解得m=3,n=2.
∴M(3,2),N(1,3).

點評:本題的綜合性強,是不可多得的一道答題.重點考查了二次函數的有關知識以及平行四邊形,梯形的性質,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知二次函數的圖象是經過點A(1,0),B(3,0),E(0,6)三點的一條拋物線.
(1)求這條拋物線的解析式;
(2)如圖,設拋物線的頂點為C,對稱軸交x軸于點D,在y軸正半軸上有一點P,且以A、O、P為頂點的三角形與△ACD相似,求P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

精英家教網閱讀材料:如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內)上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)在(2)的條件下,設拋物線的對稱軸分別交AB、x軸于點D、M,連接PA、PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(4)在(2)的條件下,設P點的橫坐標為x,△PAB的鉛垂高為h、面積為S,請分別寫出h和S關于x的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)如圖1,矩形ABCD,點C與坐標原點O重合,點A在x軸上,點B坐標為(3,
3
),求經過A、B、C三點拋物線的解析式;
(2)如圖2,拋物線E:y=-
1
2
x2+bx+c
經過坐標原點O,其頂點在y軸左側,以O為頂點作矩形OADC,A、C為拋物線E上兩點,若AC∥x軸,AD=2CD,則拋物線的解析式是
 
;
(3)如圖3,點A、B、C分別為拋物線F:y=ax2+bx+c(a<0)上的點,點B在對稱軸右側,點D在拋物線外,順次連接A、B、C、D四點,所成四邊形為矩形,且AC∥x軸,AD=2CD,求矩形ABCD的周長(用含a的式子表示).
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經過原點O和點A(6,0),平移后的拋物線的頂點為點B,對稱軸與拋物線y=-
1
2
x2
相交于點C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內)上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)設點P是拋物線(第一象限內)上的一個動點,是否存在一點P,使S△PAB=S△CAB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案