【題目】某高速公路養(yǎng)護小組乘車沿南北公路巡視維護,如果約定向北為正,向南為負,當(dāng)天的行駛記錄如下(單位:千米)+17,-9,+7,-15,+10,-8,+16.
(1)養(yǎng)護小組最后到達的地方在出發(fā)點的哪個方向?距離出發(fā)點多遠?
(2)若汽車耗油量為0.3升/千米,則這次養(yǎng)護共耗油多少升?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄭州市深入貫徹黨中央決策部署,高水平建設(shè)鄭州大都市區(qū),經(jīng)濟實現(xiàn)了持續(xù)平穩(wěn)健康發(fā)展.根據(jù)2013-2017年鄭州市生產(chǎn)總值(單位:億元)統(tǒng)計圖所提供的信息,下列判斷一定正確的是( )
A.2014年比2013年的生產(chǎn)總值增加了1000億元
B.2014-2015年與2016-2017年的生產(chǎn)總值上升率相同
C.預(yù)計2018年的生產(chǎn)總值為10146.4億元
D.2013-2017年生產(chǎn)總值逐年增長,2017年的生產(chǎn)總值達到9130.2億元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著技術(shù)的發(fā)展,人們對各類產(chǎn)品的使用充滿期待.某公司計劃在某地區(qū)銷售第一款產(chǎn)品,根據(jù)市場分析,該產(chǎn)品的銷售價格將隨銷售周期的變化而變化.設(shè)該產(chǎn)品在第(為正整數(shù))個銷售周期每臺的銷售價格為元,與之間滿足如圖所示的一次函數(shù)關(guān)系.
(1)求與之間的關(guān)系式;
(2)設(shè)該產(chǎn)品在第個銷售周期的銷售數(shù)量為(萬臺),與的關(guān)系可用來描述.根據(jù)以上信息,試問:哪個銷售周期的銷售收入最大?此時該產(chǎn)品每臺的銷售價格是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,,點為上的動點,且.
(1)求的長度;
(2)在點D運動的過程中,弦AD的延長線交BC的延長線于點E,問ADAE的值是否變化?若不變,請求出ADAE的值;若變化,請說明理由.
(3)在點D的運動過程中,過A點作AH⊥BD,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)有理數(shù)得乘法后,老師給同學(xué)們這樣一道題目:
計算:49×(﹣5),看誰算的又快又對,有兩位同學(xué)的解法如下:
聰聰:原式=﹣×5=﹣=﹣249;
明明:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對于以上兩種解法,你認為誰的解法較好?
(2)上面的解法對你有何啟發(fā),你認為還有更好的方法嗎?如果有,請把它寫出來;
(3)用你認為最合適的方法計算:29×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下
如圖(1)∠DAB=90°,求證:a2+b2=c2
證明:連接DB,過點D作DF⊥BC交BC的延長線于點F,則DF=b-a
S四邊形ADCB=
S四邊形ADCB=
∴化簡得:a2+b2=c2
請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:(2)、(4,6),(8,10,12),(14,16,18,20),…,現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個數(shù)(從左往右數(shù)).如A2=(1,1),A10=(3,2),A18=(4,3),則A200可表示為( 。
A.(14,9)B.(14,10)C.(15,9)D.(15,10)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P,Q是方格紙中的兩格點,請按要求畫出以PQ為對角線的格點四邊形.
(1)在圖1中畫出一個面積最小的¨PAQB;
(2)在圖2中畫出一個四邊形PCQD,使其是軸對稱圖形而不是中心對稱圖形,且另一條對角線CD由線段PQ以某一格點為旋轉(zhuǎn)中心旋轉(zhuǎn)得到.注:圖1,圖2在答題紙上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠ ( )
∵∠3=∠4(已知)
∴∠3=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
即∠ =∠ ( )
∴∠3=∠
∴AD∥BE( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com