【題目】“今有五十鹿進(jìn)舍,小舍容四鹿,大舍容六鹿,需舍幾何?(改編自《緝古算經(jīng)》)”大意為:今有50只鹿進(jìn)圈舍,小圈舍可以容納4頭鹿,大圈舍可以容納6頭鹿,求所需圈舍的間數(shù).求得的結(jié)果有( )
A.3種B.4種C.5種D.6種
【答案】B
【解析】
設(shè)小舍有x間,大舍有y間,根據(jù)題意得出,然后利用x與y均為非負(fù)整數(shù)進(jìn)一步分析可能性即可.
設(shè)小舍有x間,大舍有y間,
∴,
∵x與y均為非負(fù)整數(shù),
∴當(dāng)時(shí),,不符合題意,舍去;
當(dāng)時(shí),,不符合題意,舍去;
當(dāng)時(shí),,符合題意;
當(dāng)時(shí),,不符合題意,舍去;
當(dāng)時(shí),,不符合題意,舍去;
當(dāng)時(shí),,符合題意;
當(dāng)時(shí),,不符合題意,舍去;
當(dāng)時(shí),,不符合題意,舍去;
當(dāng)時(shí),,符合題意;
當(dāng)時(shí),,不符合題意,舍去;
當(dāng)時(shí),,不符合題意,舍去;
當(dāng)時(shí),,符合題意;
當(dāng)時(shí),,不符合題意,舍去;
綜上所述,共有4種情況,
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生開展課外社會(huì)實(shí)踐活動(dòng),現(xiàn)有甲、乙兩種大客車可租,已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760元.
(1)求1輛甲種客車和1輛乙種客車的租金分別是多少元?
(2)學(xué)校計(jì)劃租用甲、乙兩種客車共8輛,甲種客車每輛載客量45人,乙種客車每輛載客量30人,共有師生330人,求最節(jié)省的租車費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E.
(1)求證:AB=BE;
(2)若PA=2,cosB=,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“水是生命之源”,某市自來水公司為了鼓勵(lì)居民節(jié)約用水,規(guī)定按以下標(biāo)準(zhǔn)收取水費(fèi):
月用水量(噸) | 單價(jià)(元/噸) |
不超過25噸 | 1.4 |
超過25噸的部分 | 2.1 |
另:每噸用水加收0.95元的城市污水處理費(fèi) |
(1)如果1月份小明家用水量為18噸,那么小明家1月份應(yīng)該繳納水費(fèi) 元;
(2)小明家2月份共繳納水費(fèi)104.5元,那么小明家2月份用水多少噸?
(3)小明家的水表3月份出了故障,只有80%的用水量記入水表中,這樣小明家在3月份只繳納了56.4元水費(fèi),問小明家3月份實(shí)際應(yīng)該繳納水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二年級教師對試卷講評課中學(xué)生參與的深度與廣度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價(jià)中,一共抽查了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有6000名初二學(xué)生,那么在試卷評講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過C交x軸于E(4,0).
(1)寫出D的坐標(biāo)和直線l的解析式;
(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)Q在x軸的正半軸上運(yùn)動(dòng),過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CA=CB=4,分別以A,B,C為圓心,以AC為半徑畫弧,三條弧與邊AB所圍成的陰影部分的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線y=+3與x軸、y軸分別交于A、B兩點(diǎn),P是線段AB的中點(diǎn),拋物線y=-x2+bx+c經(jīng)過點(diǎn)A,P,O(原點(diǎn)).
(1)求拋物線的表達(dá)式;
(2)在x軸上方的拋物線上是否存在一點(diǎn)Q,使∠QAO=45°?如果存在,求出Q點(diǎn)的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( )
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com