【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.

【答案】
(1)證明:∵AC平分∠DAB,

∴∠DAC=∠CAB,

∵∠ADC=∠ACB=90°,

∴△ADC∽△ACB,

∴AD:AC=AC:AB,

∴AC2=ABAD


(2)證明:∵E為AB的中點,

∴CE= AB=AE,

∴∠EAC=∠ECA,

∵∠DAC=∠CAB,

∴∠DAC=∠ECA,

∴CE∥AD


(3)解:∵CE∥AD,

∴△AFD∽△CFE,

∴AD:CE=AF:CF,

∵CE= AB,

∴CE= ×6=3,

∵AD=4,


【解析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可證得△ADC∽△ACB,然后由相似三角形的對應(yīng)邊成比例,證得AC2=ABAD;(2)由E為AB的中點,根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半,即可證得CE= AB=AE,繼而可證得∠DAC=∠ECA,得到CE∥AD;(3)易證得△AFD∽△CFE,然后由相似三角形的對應(yīng)邊成比例,求得 的值.
【考點精析】本題主要考查了直角三角形斜邊上的中線和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握直角三角形斜邊上的中線等于斜邊的一半;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示一架水平飛行的無人機AB的尾端點A測得正前方的橋的左端點P的俯角為α其中tanα=2 ,無人機的飛行高度AH為500 米,橋的長度為1255米.
①求點H到橋左端點P的距離;
②若無人機前端點B測得正前方的橋的右端點Q的俯角為30°,求這架無人機的長度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點,連結(jié)DE.
(1)DE與半圓O相切嗎?若相切,請給出證明;若不相切,請說明理由;
(2)若AD、AB的長是方程x2﹣10x+24=0的兩個根,求直角邊BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A是以BC為直徑的圓上的一點,BE是⊙O的切線,CA的延長線與BE交于E點,F(xiàn)是BE的中點,延長AF,CB交于點P.
(1)求證:PA是⊙O的切線;
(2)若AF=3,BC=8,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E位DC邊上的點,連結(jié)BE,將△BCE繞點C順時針方向旋轉(zhuǎn)90°得到△DCF,連結(jié)EF,若∠BEC=60°,則∠EFD的度數(shù)為(
A.15°
B.10°
C.20°
D.25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L1:y=bx+c與拋物線L2:y=ax2的兩個交點坐標(biāo)分別為A(m,4),B(1,1).
(1)求m的值;
(2)過動點P(n,0)且垂直于x軸的直線與L1 , L2的交點分別為C,D,當(dāng)點C位于點D上方時,請直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A為平面內(nèi)一點,給出如下定義:過點A作AB⊥y軸于點B,作正方形ABCD(點A,B,C,D順時針排列),即稱正方形ABCD為以A為圓心,OA為半徑的⊙A的“友好正方形”.
(1)如圖1,若點A的坐標(biāo)為(1,1),則⊙A的半徑為
(2)如圖2,點A在雙曲線y= (x>0)上,它的橫坐標(biāo)是2,正方形ABCD是⊙A的“友好正方形”,試判斷點C與⊙A的位置關(guān)系,并說明理由.
(3)如圖3,若點A是直線y=﹣x+2上一動點,正方形ABCD為⊙A的“友好正方形”,且正方形ABCD在⊙A的內(nèi)部時,請直接寫出點A的橫坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對稱軸是直線x=1,其圖象的一部分如圖所示則①abc<0;②a﹣b+c<0;③3a+c<0;④當(dāng)﹣1<x<3時,y>0.其中判斷正確的有( )個.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關(guān)信息如下表:

時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200﹣2x

已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案