【題目】用n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n≥4)?
(探究)為了解決上面的數(shù)學(xué)問題,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進(jìn)轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè)n邊形的分割方案有Pn種.
探究一:用四邊形的對角線把四邊形分割成2個三角形,共有多少種不同的分割方案?
如圖①,圖②,顯然,只有2種不同的分割方案.所以,P4=2.
探究二:用五邊形的對角線把五邊形分割成3個三角形,共有多少種不同的分割方案?
不妨把分割方案分成三類:
第1類:如圖③,用A,E與B連接,先把五邊形分割轉(zhuǎn)化成1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
第2類:如圖④,用A,E與C連接,把五邊形分割成3個三角形,有1種不同的分割方案,可視為種分割方案.
第3類:圖⑤,用A,E與D連接,先把五邊形分割轉(zhuǎn)化成1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
所以,P5 =++=(種)
探究三:用六邊形的對角線把六邊形分割成4個三角形,共有多少種不同的分割方案?
不妨把分割方案分成四類:
第1類:如圖⑥,用A,F(xiàn)與B連接,先把六邊形分割轉(zhuǎn)化成1個三角形和1個五邊形,再把五邊形分割成3個三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種不同的分割方案.
第2類:如圖⑦,用A,F(xiàn)與C連接,先把六邊形分割轉(zhuǎn)化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案
第3類:如圖⑧,用A,F(xiàn)與D連接,先把六邊形分割轉(zhuǎn)化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案.
第4類:如圖⑨,用A,F(xiàn)與E連接,先把六邊形分割轉(zhuǎn)化成1個三角形和1個五邊形.再把五邊形分割成3個三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種分割方案.
所以,P6 =(種)
探究四:用七邊形的對角線把七邊形分割成5個三角形,則P7與P6的關(guān)系為:
P7 = ,共有_____種不同的分割方案.……
(結(jié)論)用n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n≥4)?(直接寫出Pn與Pn -1的關(guān)系式,不寫解答過程).
(應(yīng)用)用八邊形的對角線把八邊形分割成6個三角形,共有多少種不同的分割方案? (應(yīng)用上述結(jié)論,寫出解答過程)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2ax+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C(0,3),tan∠OAC= .
(1)求拋物線的解析式;
(2)點(diǎn)H是線段AC上任意一點(diǎn),過H作直線HN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)P,求線段PH的最大值;
(3)點(diǎn)M是拋物線上任意一點(diǎn),連接CM,以CM為邊作正方形CMEF,是否存在點(diǎn)M使點(diǎn)E恰好落在對稱軸上?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,折疊長方形一邊AD,點(diǎn)D落在BC邊的點(diǎn)F處, 已知BC=10厘米,AB=8厘米,求FC和EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=100°,∠BOC=, D是△ABC外一點(diǎn),且△ADC ≌△BOC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)=150°時,請計算△AOD三內(nèi)角的度數(shù),并判斷△AOD的形狀;
(3)探究:當(dāng)為多少度時,△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P1、P2是反比例函數(shù)y= (k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點(diǎn)P1、P2為直角頂點(diǎn).
(1)求反比例函數(shù)的解析式.
(2)①求P2的坐標(biāo).
②根據(jù)圖象直接寫出在第一象限內(nèi)當(dāng)x滿足什么條件時,經(jīng)過點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y= 的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程
已知a、b、c為△ABC為三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀
解:∵a2c2-b2c2=a4-b4①
∴c2(a2-b2)=(a2-b2)(a2+b2)②
∴c2=a2+b2③
∴△ABC是直角三角形
回答下列問題:
(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的序號________.
(2)錯誤原因?yàn)?/span>________.
(3)本題正確結(jié)論是什么,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出下列四個結(jié)論:
①AE=CF;
②△EPF是等腰直角三角形;
③EF=AB;
④,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有________(把你認(rèn)為正確的結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是( )
A.該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B.該村人均耕地面積y與總?cè)丝趚成正比例
C.若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D.當(dāng)該村總?cè)丝跒?0人時,人均耕地面積為1公頃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com