【題目】某校九年級數(shù)學測試后,為了解學生學習情況,隨機抽取了九年級部分學生的數(shù)學成績進行統(tǒng)計,得到相關的統(tǒng)計圖表如下.

成績/

120﹣111

110﹣101

100﹣91

90以下

成績等級

A

B

C

D

請根據(jù)以上信息解答下列問題:

(1)這次統(tǒng)計共抽取了   名學生的數(shù)學成績,補全頻數(shù)分布直方圖;

(2)若該校九年級有1000名學生,請據(jù)此估計該校九年級此次數(shù)學成績在B等級以上(含B等級)的學生有多少人?

(3)根據(jù)學習中存在的問題,通過一段時間的針對性復習與訓練,若A等級學生數(shù)可提高40%,B等級學生數(shù)可提高10%,請估計經(jīng)過訓練后九年級數(shù)學成績在B等級以上(含B等級)的學生可達多少人?

【答案】(1)50人;補圖見解析;(2)500人;(3)610名.

【解析】

(1)用總人數(shù)乘以A所占的百分比,即可得到總人數(shù);再用總人數(shù)乘以A等級人數(shù)所占比例可得其人數(shù),繼而根據(jù)各等級人數(shù)之和等于總人數(shù)可得D等級人數(shù),據(jù)此可補全條形圖;
(2)用總人數(shù)乘以(A的百分比+B的百分比),即可解答;
(3)先計算出提高后A,B所占的百分比,再乘以總人數(shù),即可解答.

(1)本次調(diào)查抽取的總人數(shù)為15÷=50(人),

則A等級人數(shù)為50×=10(人),D等級人數(shù)為50﹣(10+15+5)=20(人),

補全直方圖如下:

故答案為:50.

(2)估計該校九年級此次數(shù)學成績在B等級以上(含B等級)的學生有1000×=500(人);

(3)∵A級學生數(shù)可提高40%,B級學生數(shù)可提高10%,

B級學生所占的百分比為:30%×(1+10%)=33%,A級學生所占的百分比為:20%×(1+40%)=28%,

∴1000×(33%+28%)=610(人),

估計經(jīng)過訓練后九年級數(shù)學成績在B以上(含B級)的學生可達610名.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm,點P從點A出發(fā),沿AB方向以2cm/s的速度向點B運動;同時點Q從點A出發(fā),沿AC方向以1cm/s的速度向點C運動,其中一個動點到達終點,則另一個動點也停止運動,則PAQ的最大面積是( 。

A. 8cm2 B. 9cm2 C. 16cm2 D. 18cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC;

(2) 請畫出ABC關于原點對稱的ABC

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )

A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,斜邊AB的垂直平分線交AB于點D,交BC于點E,AE平分∠BAC,那么下列不成立的是(

A.B=∠CAEB.DEA=∠CEAC.B=∠BAED.AC2EC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°,EAC上(且不與點AC重合.在ABC的外部作等腰Rt△CED,使CED=90°連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2CED繞點C逆時針旋轉,當點E在線段BC上時連接AE,求證AF=AE

3如圖3,CED繞點C繼續(xù)逆時針旋轉當平行四邊形ABFD為菱形,CEDABC的下方時,AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面圖1、圖2、圖3各正方形中的四個數(shù)之間的變化規(guī)律,按照這樣的變化規(guī)律,圖n中的M應為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關于BC所在直線的對稱圖形得到A'BC,連結AA′交直線BC于點D.若點BAA′C的重心,求的值.

(3)應用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC倍.將ABC繞點C按順時針方向旋轉45°得到A'B'C,A′C所在直線交l2于點D.求CD的值.

查看答案和解析>>

同步練習冊答案