【題目】如圖,⊙OABC的外接圓,FH是⊙O的切線,切點為F,F(xiàn)HBC,連結AFBCE,ABC的平分線BDAFD,連結BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.

【答案】

1 見解析

2 見解析

3

【解析】

證明:(1)連接OF

∴FH·O于點F

∴OF⊥FH ………………………… 1

∵BC | | FH

∴OF⊥BC ………………………… 2

∴BF="CF" ………………………… 3

∴∠BAF=∠CAF

AF平分∠BAC…………………4

2∵∠CAF=∠CBF

∠CAF=∠BAF

∴∠CBF=∠BAF ………………………… 6

∵BD平分∠ABC

∴∠ABD=∠CBD

∴∠BAF+∠ABD=∠CBF+∠CBD

∠FBD=∠FDB………………………… 7

∴BF="DF" ………………………… 8

3∵∠BFE=∠AFB ∠FBE=∠FAB

∴ΔBEF∽ΔABF………………………… 9

BF2=EF·AF …………………… 10

∵EF=4 DE=3 ∴BF="DF" =4+3=7

AF=AD+7

4AD+7=49 解得AD=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是ABBC邊上的點,且∠EDF=45°,將DAE繞點D逆時針旋轉90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑CD=10cm,AB是⊙O的弦,ABCD,垂足為M,且AB=8cm,則AC的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)ykxy=-在同一坐標系內的大致圖象是(  )

(1)    (2)

(3)    (4)

A. (1)(2)

B. (1)(3)

C. (2)(3)

D. (2)(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,經過點C的切線交AB的延長線于點E,ADECEC的延長線于點D,AD交⊙OF,F(xiàn)MABH,分別交⊙O、ACM、N,連接MB,BC.

(1)求證:AC平分∠DAE;

(2)若cosM=,BE=1,①求⊙O的半徑;②求FN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對應值如表:

下列說法正確的是( 。

A. 拋物線的開口向下

B. x>-3時,yx的增大而增大

C. 二次函數(shù)的最小值是-2

D. 拋物線的對稱軸是x=-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAB的頂點坐標分別為O0,0)、A32)、B2,0),將這三個頂點的坐標同時擴大到原來的2倍,得到對應點DE、F

(1)在圖中畫出△DEF;

(2)E是否在直線OA上?為什么?

(3)OAB與△DEF______位似圖形(填“是”或“不是”)

查看答案和解析>>

同步練習冊答案