【題目】一布袋中有紅、黃、白三種顏色的球各一個,它們除顏色外,其它都一樣,小亮從布袋摸出一個球后放回去搖勻,再摸出一個球.
(1)請你用列舉法(列表法或樹形圖)分析并求出小亮兩次都能摸到白球的概率.
【答案】
(1)
解法一:
畫樹狀圖:
P(白,白)= ;
解法二:列表得
白 | (紅,白) | (黃,白) | (白,白) |
黃 | (紅,黃) | (黃,黃) | (白,黃) |
紅 | (紅,紅) | (黃,紅) | (白,紅) |
紅 | 黃 | 白 |
P(白,白)=
;
解法一:
畫樹狀圖:
P(白,白)= ;
解法二:列表得
白 | (紅,白) | (黃,白) | (白,白) |
黃 | (紅,黃) | (黃,黃) | (白,黃) |
紅 | (紅,紅) | (黃,紅) | (白,紅) |
紅 | 黃 | 白 |
P(白,白)=
;解法一:
畫樹狀圖:
P(白,白)= ;
解法二:列表得
白 | (紅,白) | (黃,白) | (白,白) |
黃 | (紅,黃) | (黃,黃) | (白,黃) |
紅 | (紅,紅) | (黃,紅) | (白,紅) |
紅 | 黃 | 白 |
P(白,白)=
【解析】解此題的關鍵是準確列表,找出所有的可能情況,即可求得概率.
科目:初中數(shù)學 來源: 題型:
【題目】望江中學為了了解學生平均每天“誦讀經典”的時間,在全校范圍內隨機抽查了部分學生進行調查統(tǒng)計,并將調查統(tǒng)計的結果分為:每天誦讀時間t≤20分鐘的學生記為A類,20分鐘<t≤40分鐘的學生記為B類,40分鐘<t≤60分鐘的學生記為C類,t>60分鐘的學生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)m=%,n=%,這次共抽查了名學生進行調查統(tǒng)計;
(2)請補全上面的條形圖;
(3)如果該校共有1200名學生,請你估計該校C類學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作:小明準備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進行如下設計:
說明:
方案一:圖形中的圓過點A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經過兩個正方形的頂點
紙片利用率= ×100%
發(fā)現(xiàn):
(1)方案一中的點A、B恰好為該圓一直徑的兩個端點.你認為小明的這個發(fā)現(xiàn)是否正確,請說明理由.
(2)小明通過計算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.請幫忙計算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個方案的利用率均偏低,又進行了新的設計(方案三),請直接寫出方案三的利用率.
說明:方案三中的每條邊均過其中兩個正方形的頂點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C:y=﹣x2+bx+c經過A(﹣3,0)和B(0,3)兩點,將這條拋物線的頂點記為M,它的對稱軸與x軸的交點記為N.
(1)求拋物線C的表達式;
(2)求點M的坐標;
(3)將拋物線C平移到拋物線C′,拋物線C′的頂點記為M′,它的對稱軸與x軸的交點記為N′.如果以點M、N、M′、N′為頂點的四邊形是面積為16的平行四邊形,那么應將拋物線C怎樣平移?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經驗和市場行情,預計夏季某一段時間內,甲種水果的銷售利潤y甲(萬元)與進貨量x(噸)近似滿足函數(shù)關系y甲=0.3x;乙種水果的銷售利潤y乙(萬元)與進貨量x(噸)近似滿足函數(shù)關系y乙=ax2+bx(其中a≠0,a,b為常數(shù)),且進貨量x為1噸時,銷售利潤y乙為1.4萬元;進貨量x為2噸時,銷售利潤y乙為2.6萬元.
(1)求y乙(萬元)與x(噸)之間的函數(shù)關系式.
(2)如果市場準備進甲、乙兩種水果共10噸,設乙種水果的進貨量為t噸,請你寫出這兩種水果所獲得的銷售利潤之和W(萬元)與t(噸)之間的函數(shù)關系式.并求出這兩種水果各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,下列結論:①△DFE是等腰直角三角形;②四邊形CEDF的周長不變;③點C到線段EF的最大距離為1.其中正確的結論有 . (填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在平面直角從標系中,A點坐標為(0,4),B點坐標為(2,0),C(m,6)為反比例函數(shù) 圖象上一點.將△AOB繞B點旋轉至△A′O′B處.
(1)求m的值;
(2)若O′落在OC上,連接AA′交OC與D點.①求證:四邊形ACA′O′為平行四邊形; ②求CD的長度;
(3)直接寫出當AO′最短和最長時A′點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O直徑,AC是⊙O的弦,∠BAC的平分線AD交⊙O于D,過點D作DE⊥AC交AC的延長線于點E,OE交AD于點F,cos∠BAC=
(1)求證:DE是⊙O的切線;
(2)若AF=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com