【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標;
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標及∠APB的度數.
【答案】(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).
【解析】試題分析:(1)過C作CD⊥Y軸于D,證出△ABO≌△BCD,再由OB=DC,OA=DB得出C(1,-4);
(2)證出△APB≌△CQB,進而得出PA=CQ;
(3)由C、P、Q三點共線,得∠CQB=135°,即∠APB=135°,進而∠OPB=45°,得P(1,0).
試題解析:(1)過C作CD⊥Y軸于D,
∴∠AOB=∠BDC=90°, ∠2+∠3=90°,
∵BC⊥AB,
∴∠1+∠3=90°,
∴∠1=∠2,
在△ABO和△BCD中, ,
∴△ABO≌△BCD,
∴OB=DC, OA=DB
∴C(1,-4);
(2)∵∠ABQ+∠QBC=∠PBA+∠ABQ=90°,
∴∠QBC=∠PBA,
在△APB和△CQB中, ,
∴△APB≌△CQB,(AAS)
∴AP=CQ;
(2)∵△APB≌△CQB,
∴∠APB=∠CQB,
∵由C、P、Q三點共線,
∴∠CQB=135°,即∠APB=135°,
∴∠OPB=45°,
∴P(1,0).
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數y= (x>0)的圖象相交于A(2,3),B(a,1)兩點.
(1)求這兩個函數表達式;
(2)求證:AB=2BC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地管轄A,B,C,D四個鎮(zhèn),其中C,A,D三個鎮(zhèn)在一條直線上,相互兩鎮(zhèn)之間的公路里程如圖所示,由于大山阻隔,原來從A,C兩鎮(zhèn)去D鎮(zhèn)都需繞到B鎮(zhèn)前往.為了發(fā)展經濟,縮短A,C兩鎮(zhèn)到D鎮(zhèn)的路程,現(xiàn)決定開鑿隧道修通A,C兩鎮(zhèn)直達D鎮(zhèn)的公路AD.公路修通后從A鎮(zhèn)去D鎮(zhèn)的路程比原來縮短了多少千米?(參考數據:=32,≈46.65)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某高校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調查了部分同學就餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
(1)這次被調查的同學共有名;
(2)補全條形統(tǒng)計圖;
(3)計算在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數;
(4)校學生會通過數據分析,估計這次被調查的所有學生一餐浪費的食物可以供200人用一餐.據此估算,該校20000名學生一餐浪費的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為2000元、1700元的A、B兩種型號的空調,如表是近兩周的銷售情況:
銷售時段 | 銷售數量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
(進價、售價均保持不變,利潤=銷售總收入進貨成本)
(1)求A、B兩種型號的空調的銷售單價;
(2)若超市準備用不多于54000元的金額再采購這兩種型號的空調共30臺,求A種型號的空調最多能采購多少臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC、BD相交于點O,將△COD繞點O按逆時針方向旋轉得到△C1OD1 , 旋轉角為θ(0°<θ<90°),連接AC1、BD1 , AC1與BD1交于點P.
(1)如圖1,若四邊形ABCD是正方形.請直接寫出AC1 與BD1的數量關系和位置關系.
(2)如圖2,若四邊形ABCD是菱形,AC=6,BD=8,判斷AC1與BD1的數量關系和位置關系,并給出證明;
(3)如圖3,若四邊形ABCD是平行四邊形,AC=6,BD=12,連接DD1 , 設AC1=kBD1 , 請直接寫出k的值和AC12+(kDD1)2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,經過原點的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點為A.過點P(1,m)作直線PM⊥x軸于點M,交拋物線于點B.記點B關于拋物線對稱軸的對稱點為C(B、C不重合).連接CB,CP.
(1)當m=3時,求點A的坐標及BC的長;
(2)當m>1時,連接CA,問m為何值時CA⊥CP?
(3)過點P作PE⊥PC且PE=PC,問是否存在m,使得點E落在坐標軸上?若存在,求出所有滿足要求的m的值,并定出相對應的點E坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列關于分式的判斷,正確的是( )
A.當x=2時, 的值為零
B.無論x為何值, 的值總為正數
C.無論x為何值, 不可能得整數值
D.當x≠3時, 有意義
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,FH⊥BE,交BD于點G,交BC于點H;下列結論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結論有______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com