【題目】小剛從家出發(fā)勻速步行去學校上學.幾分鐘后發(fā)現(xiàn)忘帶數(shù)學作業(yè),于是掉頭原速返回并立即打電話給爸爸,掛斷電話后爸爸立即勻速跑步去追小剛,同時小剛以原速的兩倍勻速跑步回家,爸爸追上小剛后以原速的倍原路步行回家.由于時間關(guān)系小明拿到作業(yè)后同樣以之前跑步的速度趕往學校,并在從家出發(fā)后23分鐘到校(小剛被爸爸追上時交流時間忽略不計).兩人之間相距的路程y(米)與小剛從家出發(fā)到學校的步行時間x(分鐘)之間的函數(shù)關(guān)系如圖所示,則小剛家到學校的路程為_____米.
【答案】2960
【解析】
根據(jù)圖像求出相遇后爸爸回家所用的時間,進而得出小剛打完電話與爸爸相遇所用的時間,結(jié)合題意得出相遇后爸爸2分鐘走的路程,得到小剛后來的速度,利用“路程=速度×時間”公式計算即可得出答案.
解:由圖可知,小剛和爸爸相遇后,到小剛爸爸回到家用時17﹣15=2(分鐘),
∵爸爸追上小剛后以原速的倍原路步行回家,
∴小剛打完電話到與爸爸相遇用的時間為1分鐘,
∵由于時間關(guān)系小明拿到作業(yè)后同樣以之前跑步的速度趕往學校,
∴小剛和爸爸相遇之后跑步的1分和爸爸2分鐘走的路程是720米,
∴小剛后來的速度為:1040﹣720=320(米/分鐘)
則小剛家到學校的路程為:1040+(23﹣17)×320=1040+6×320=1040+1920=2960(米),
故答案為:2960.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與x軸交于點A,與y軸交于點B,直線與x軸交于點C.
(1)求點B的坐標;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為G.
①當時,結(jié)合函數(shù)圖象,求區(qū)域G內(nèi)整點的個數(shù);
②若區(qū)域G內(nèi)恰有2個整點,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示
(1)家與圖書館之間的路程為多少m,小玲步行的速度為多少m/min;
(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;
(3)求兩人相遇的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線L1:y=ax2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0),OB=OC=3OA.若拋物線L2與拋物線L1關(guān)于直線x=2對稱.
(1)求拋物線L1與拋物線L2的解析式;
(2)在拋物線L1上是否存在一點P,在拋物線L2上是否存在一點Q,使得以BC為邊,且以B、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出P、Q兩點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O是正方形ABCD兩對角線的交點. 分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)角(0°< <360°)得到正方形,如圖2.
①在旋轉(zhuǎn)過程中,當∠是直角時,求的度數(shù);(注明:當直角邊為斜邊一半時,這條直角邊所對的銳角為30度)
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求長的最大值和此時的度數(shù),直接寫出結(jié)果不必說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與 x 軸交于點 C,與 y 軸交于點 B,拋物線 經(jīng)過 B、C 兩點.
(1)求拋物線的解析式;
(2)如圖,點 E 是拋物線上的一動點(不與 B,C 兩點重合),△BEC 面積記為 S,當 S 取何值時,對應(yīng)的點 E 有且只有三個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,4)、B(-4,n)兩點.
(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集 ;
(3)過點B作BC⊥x軸,垂足為點C,連接AC,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,直線y1=2x+4分別與x軸,y軸交于A,B兩點,以線段OB為一條邊向右側(cè)作矩形OCDB,且點D在直線y2=﹣x+b上,若矩形OCDB的面積為20,直線y1=2x+4與直線y2=﹣x+b交于點P.則P的坐標為( 。
A.(2,8)B.C.D.(4,12)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)x1、x2是關(guān)于x的方程2x2﹣4mx+2m2+3m+2=0的兩個實根,當m=_____時,x12+x22有最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com