【題目】回答下列問題:

1)如圖所示的甲、乙兩個平面圖形能折什么幾何體?

2)由多個平面圍成的幾何體叫做多面體.若一個多面體的面數(shù)為f,頂點個數(shù)為v,棱數(shù)為e,分別計算第(1)題中兩個多面體的f+v﹣e的值?你發(fā)現(xiàn)什么規(guī)律?

3)應(yīng)用上述規(guī)律解決問題:一個多面體的頂點數(shù)比面數(shù)大8,且有50條棱,求這個幾何體的面數(shù).

【答案】1)甲是長方體,乙是五棱錐;(2)甲:=2,乙:=2,規(guī)律:頂點數(shù)+面數(shù)-棱數(shù)=2;(322

【解析】(1)根據(jù)平面圖形的展開圖的特征即可作出判斷;
(2)分別數(shù)出甲、乙兩個平面圖形圍成的幾何體的面數(shù)、頂點個數(shù)、棱數(shù),即可得到規(guī)律;
(3)設(shè)這個多面體的面數(shù)為,根據(jù)(2)中得到的規(guī)律即可列方程求解.
解:(1)甲是長方體,乙是五棱錐;
(2)甲:f=6,e=12,v=8,f+v–e=2
乙:f=6,e=10,v=6,f+v–e=2
規(guī)律:頂點數(shù)+面數(shù)-棱數(shù)=2;
(3)設(shè)這個多面體的面數(shù)為,由題意得
+ +8-50=2,解得=22
答:這個幾何體的面數(shù)為22.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點D,與直角邊AC相交于E、F兩點,連結(jié)DE,已知∠B=30°,⊙O的半徑為6,弧DE的長度為2π.

(1)求證:DE∥BC;
(2)若AF=CE,求線段BC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了從甲、乙兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊成績進行了測試,5次打靶命中的環(huán)數(shù)如下:

甲:8,7,9,8,8;乙:9,6,10,8,7;

將下表填寫完整:

平均數(shù)

中位數(shù)

方差

______

8

______

8

______

2

根據(jù)以上信息,若你是教練,你會選擇誰參加射擊比賽,理由是什么?

若乙再射擊一次,命中8環(huán),則乙這六次射擊成績的方差會______變大變小不變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移2個單位后,得到△A′B′C′,連接A′C,則△A′B′C的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,邊AB的長為3,點E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BEDF是菱形,且EF=AE+FC,則邊BC的長為 ( )

A. B. 2 C. 3 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,P點從點A開始以2厘米/秒的速度沿ABC的方向移動,點Q從點C開始以1厘米/秒的速度沿CAB的方向移動,在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果P、Q同時出發(fā),用t(秒)表示移動時間,那么:

1)如圖1,若P在線段AB上運動,Q在線段CA上運動,試求出t為何值時,QAAP

2)如圖2,點QCA上運動,試求出t為何值時,三角形QAB的面積等于三角形ABC面積的;

3)如圖3,當P點到達C點時,P、Q兩點都停止運動,試求當t為何值時,線段AQ的長度等于線段BP的長的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點為M,與y軸的交點為N,我們稱以N為頂點,對稱軸是y軸且過點M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.

(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 , 衍生直線的解析式是;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點為M,與y軸交點為N,將它的衍生直線MN先繞點N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個單位得直線n,P是直線n上的動點,是否存在點P,使△POM為直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)問題背景
如圖①,BC是⊙O的直徑,點A在⊙O上,AB=AC,P為BmC上一動點(不與B,C重合),求證: PA=PB+PC.

小明同學觀察到圖中自點A出發(fā)有三條線段AB,AP,AC,且AB=AC,這就為旋轉(zhuǎn)作了鋪墊.于是,小明同學有如下思考過程:
第一步:將△PAC繞著點A順時針旋轉(zhuǎn)90°至△QAB(如圖①);
第二步:證明Q,B,P三點共線,進而原題得證.
請你根據(jù)小明同學的思考過程完成證明過程.
(2)類比遷移
如圖②,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,求OC的最小值.

(3)拓展延伸
如圖③,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB= AC,AB⊥AC,垂足為A,則OC的最小值為

查看答案和解析>>

同步練習冊答案