【題目】先列表,然后在同一平面直角坐標(biāo)系內(nèi)分別描點(diǎn)畫出下列二次函數(shù)的圖象,并寫出對稱軸與頂點(diǎn)坐標(biāo).
①y=- (x+2)2;②y=- (x-1)2.
【答案】見解析
【解析】試題分析:描點(diǎn)畫二次函數(shù)圖像時(shí),取對稱軸兩側(cè)的點(diǎn)更容易確定函數(shù)圖像,根據(jù)圖像確定:拋物線y=- (x+2)2的對稱軸為直線x=-2,頂點(diǎn)坐標(biāo)為(-2,0);
拋物線y=- (x-1)2的對稱軸為直線x=1,頂點(diǎn)坐標(biāo)為(1,0).
解:列表:
x | … | -4 | -3 | -2 | -1 | 0 | … | ||||
y=- (x+2)2 | … | -1 | -0.25 | 0 | -0.25 | -1 | … | ||||
x | … | -1 | 0 | 1 | 2 | 3 | … | ||||
y=- (x-1)2 | … | -1 | -0.25 | 0 | -0.25 | -1 | … | ||||
描點(diǎn),連線,如圖.
拋物線y=- (x+2)2的對稱軸為直線x=-2,頂點(diǎn)坐標(biāo)為(-2,0);
拋物線y=- (x-1)2的對稱軸為直線x=1,頂點(diǎn)坐標(biāo)為(1,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個(gè)新款水杯,水杯不盛水時(shí)按如圖②所示的位置放置,這樣可以快速晾干杯底,干凈透氣;將圖②的主體部分抽象成圖③,此時(shí)杯口與水平直線的夾角為37°,四邊形ABCD可以看作矩形,測得AB=10cm,BC=8cm,過點(diǎn)A作AF⊥CE,交CE于點(diǎn)F.
(1)求∠BAF的度數(shù);
(2)求點(diǎn)A到水平直線CE的距離AF的長 (參考數(shù)據(jù)sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:在平面直角坐標(biāo)系中,四邊形OACB為矩形,C點(diǎn)坐標(biāo)為(3,6),若點(diǎn)P從O點(diǎn)沿OA向A點(diǎn)以1cm/s的速度運(yùn)動(dòng),點(diǎn)Q從A點(diǎn)沿AC以2cm/s的速度運(yùn)動(dòng),如果P、Q分別從O、A同時(shí)出發(fā),問:
(1)經(jīng)過多長時(shí)間△PAQ的面積為2cm?
(2)△PAQ的面積能否達(dá)到3 cm?
(3)經(jīng)過多長時(shí)間,P、Q兩點(diǎn)之間的距離為cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個(gè)矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2 ,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,是上一點(diǎn),且,是上任一點(diǎn),于點(diǎn),于點(diǎn),下列結(jié)論:①是等腰三角形;②;③;④,其中正確的結(jié)論是( )
A.①②B.①③④C.①④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為引導(dǎo)學(xué)生“愛讀書,多讀書,讀好書”,某校七(2)班決定購買A、B兩種書籍.若購買A種書籍1本和B種書籍3本,共需要180元;若購買A種書籍3本和B種書籍1本,共需要140元.
(1)求A、B兩種書籍每本各需多少元?
(2)該班根據(jù)實(shí)際情況,要求購買A、B兩種書籍總費(fèi)用不超過700元,并且購買B種書籍的數(shù)量是A種書籍的,求該班本次購買A、B兩種書籍有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=a(x﹣h)2+的圖象經(jīng)過原點(diǎn)O(0,0),A(2,0).
(1)寫出該函數(shù)圖象的對稱軸;
(2)若將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,試判斷點(diǎn)A′是否為該函數(shù)圖象的頂點(diǎn)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+(b﹣)x+c=0(a≠0)的兩根之和( )
A. 大于0 B. 等于0 C. 小于0 D. 不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com