【題目】先列表,然后在同一平面直角坐標(biāo)系內(nèi)分別描點(diǎn)畫出下列二次函數(shù)的圖象,并寫出對稱軸與頂點(diǎn)坐標(biāo).

①y=- (x+2)2;②y=- (x-1)2.

【答案】見解析

【解析】試題分析:描點(diǎn)畫二次函數(shù)圖像時(shí),取對稱軸兩側(cè)的點(diǎn)更容易確定函數(shù)圖像,根據(jù)圖像確定:拋物線y=- (x+2)2的對稱軸為直線x=-2,頂點(diǎn)坐標(biāo)為(-2,0);

拋物線y=- (x-1)2的對稱軸為直線x=1,頂點(diǎn)坐標(biāo)為(1,0).

解:列表:

x

-4

-3

-2

-1

0

y=- (x+2)2

-1

-0.25

0

-0.25

-1

x

-1

0

1

2

3

y=- (x-1)2

-1

-0.25

0

-0.25

-1

描點(diǎn),連線如圖.

拋物線y=- (x+2)2的對稱軸為直線x=-2頂點(diǎn)坐標(biāo)為(-2,0);

拋物線y=- (x-1)2的對稱軸為直線x=1頂點(diǎn)坐標(biāo)為(1,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是一個(gè)新款水杯,水杯不盛水時(shí)按如圖②所示的位置放置,這樣可以快速晾干杯底,干凈透氣;將圖②的主體部分抽象成圖③,此時(shí)杯口與水平直線的夾角為37°,四邊形ABCD可以看作矩形,測得AB10cmBC8cm,過點(diǎn)AAFCE,交CE于點(diǎn)F.

(1)求∠BAF的度數(shù);

(2)求點(diǎn)A到水平直線CE的距離AF的長 (參考數(shù)據(jù)sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:在平面直角坐標(biāo)系中,四邊形OACB為矩形,C點(diǎn)坐標(biāo)為(3,6),若點(diǎn)PO點(diǎn)沿OAA點(diǎn)以1cm/s的速度運(yùn)動(dòng),點(diǎn)QA點(diǎn)沿AC2cm/s的速度運(yùn)動(dòng),如果PQ分別從O、A同時(shí)出發(fā),問:

1)經(jīng)過多長時(shí)間PAQ的面積為2cm?

2PAQ的面積能否達(dá)到3 cm?

3)經(jīng)過多長時(shí)間,P、Q兩點(diǎn)之間的距離為cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個(gè)矩形場地.

(1)怎樣圍才能使矩形場地的面積為750m2?

(2)能否使所圍矩形場地的面積為810m2 ,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,上一點(diǎn),且,上任一點(diǎn),于點(diǎn),于點(diǎn),下列結(jié)論:①是等腰三角形;②;③;④,其中正確的結(jié)論是(

A.①②B.①③④C.①④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為引導(dǎo)學(xué)生愛讀書,多讀書,讀好書”,某校七(2)班決定購買A、B兩種書籍.若購買A種書籍1本和B種書籍3本,共需要180元;若購買A種書籍3本和B種書籍1本,共需要140.

(1)A、B兩種書籍每本各需多少元?

(2)該班根據(jù)實(shí)際情況,要求購買A、B兩種書籍總費(fèi)用不超過700元,并且購買B種書籍的數(shù)量是A種書籍的,求該班本次購買A、B兩種書籍有哪幾種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=a(x﹣h)2+的圖象經(jīng)過原點(diǎn)O(0,0),A(2,0).

(1)寫出該函數(shù)圖象的對稱軸;

(2)若將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,試判斷點(diǎn)A′是否為該函數(shù)圖象的頂點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,點(diǎn)的坐標(biāo)是,則點(diǎn)的坐標(biāo)是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+bx+c=0(a≠0)的兩根之和

A. 大于0 B. 等于0 C. 小于0 D. 不能確定

查看答案和解析>>

同步練習(xí)冊答案