【題目】如圖24-1-4-16所示,AB是⊙O的直徑,C、D、E都是⊙O上的點(diǎn),則∠1+∠2=.
【答案】90°
【解析】∠1所對的弧是弧AE,∠2所對的弧是弧BE , 而弧AE+弧BE=弧AB是半圓,因此連結(jié)AD , ∠ADB的度數(shù)是90°,所以∠ADB=∠1+∠2.本題也可以連結(jié)EO , 得到圓心角∠EOA和∠EOB,而∠EOA+∠EOB=180°,所以∠1+∠2=90°.
【考點(diǎn)精析】關(guān)于本題考查的等邊三角形的性質(zhì)和圓周角定理,需要了解等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,CN是∠BCE的平分線.
(1)若CM平分∠BCD,求∠MCN的度數(shù);
(2)若CM在∠BCD的內(nèi)部,且CM⊥CN于C,求證:CM平分∠BCD;
(3)在(2)的條件下,連結(jié)BM,BN,且BM⊥BN,∠MBN繞著B點(diǎn)旋轉(zhuǎn),∠BMC+∠BNC是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心.(下列各題結(jié)果精確到0.1m)
(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如上圖,反比例函數(shù)的圖象位于第一、三象限,其中第一象限內(nèi)的圖象經(jīng)過點(diǎn)A(1,2),請?jiān)诘谌笙迌?nèi)的圖象上找一個(gè)你喜歡的點(diǎn)P,你選擇的P點(diǎn)坐標(biāo)為 .
【答案】(-1,-2)(答案不唯一).
【解析】試題分析:根據(jù)“第一象限內(nèi)的圖象經(jīng)過點(diǎn)A(1,2)”先求出函數(shù)解析式,給x一個(gè)值負(fù)數(shù),求出y值即可得到坐標(biāo).
試題解析:∵圖象經(jīng)過點(diǎn)A(1,2),
∴
解得k=2,
∴函數(shù)解析式為y=,
當(dāng)x=-1時(shí),y==-2,
∴P點(diǎn)坐標(biāo)為(-1,-2)(答案不唯一).
考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
【題型】填空題
【結(jié)束】
13
【題目】在y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)()與函數(shù)()所截,當(dāng)直線l向右平移4個(gè)單位時(shí),直線l被兩函數(shù)圖象所截得的線段掃過的面積為__________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)()與函數(shù)()所截,當(dāng)直線l向右平移4個(gè)單位時(shí),直線l被兩函數(shù)圖象所截得的線段掃過的面積為__________平方單位.
【答案】8
【解析】∵y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)y=(x>0)與函數(shù)y=+2(x>0)所截,∴設(shè)它們的交點(diǎn)為A,C,∴AC=2,∵直線l向右平移4個(gè)單位,∴CD=4,∴直線l被兩函數(shù)圖象所截得的線段掃過的面積為 2×4=8平方單位.故答案為8.
【題型】填空題
【結(jié)束】
14
【題目】函數(shù)的圖象如右圖所示,則結(jié)論:
①兩函數(shù)圖象的交點(diǎn)的坐標(biāo)為; ②當(dāng)時(shí), ;
③當(dāng)時(shí), ; ④當(dāng)逐漸增大時(shí), 隨著的增大而增大, 隨著的增大而減。
其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的反比例函數(shù),且當(dāng)x=-4時(shí),y=,
(1)求這個(gè)反比例函數(shù)關(guān)系式和自變量x的取值范圍;
(2)求當(dāng)x=6時(shí)函數(shù)y的值.
【答案】(1) (2)
【解析】整體分析:
(1)由反比例函數(shù)的這定義求k值,確定x的取值范圍;(2)把x=6代入(1)中求得的反比例函數(shù)的解析式.
解:(1)設(shè)反比例函數(shù)關(guān)系式為,
則k=-4×=-2,
所以個(gè)反比例函數(shù)關(guān)系式是,自變量x的取值范圍是x≠0.
(2)當(dāng)x=6時(shí), ==-.
【題型】解答題
【結(jié)束】
18
【題目】如圖,函數(shù)y= 和y= - x+4的圖像交點(diǎn)為A、B,原點(diǎn)為O,求△AOB面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列說法:①若DE∥AB,則∠DEF+∠EFB=180;
②能與∠DEF構(gòu)成內(nèi)錯(cuò)角的角的個(gè)數(shù)有2個(gè);③能與∠BFE構(gòu)
成同位角的角的個(gè)數(shù)有2個(gè);④能與∠C構(gòu)成同旁內(nèi)角的角的個(gè)數(shù)有4個(gè).其中結(jié)論正確的是( )
A. ①② B. ③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,利用關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特點(diǎn),作出與四邊形ABCD關(guān)于原點(diǎn)對稱的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD的對角線AC、BD交于點(diǎn)O,若OE=OF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)求證:四邊形DEBF是平行四邊形;
(3)若OD=OE=OF,則四邊形DEBF是什么特殊的四邊形,請證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com