【題目】如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點(diǎn)E,連接AC、OC、BC
(1)求證:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面積.(結(jié)果保留π)
【答案】(1)見解析;(2)169π(cm2).
【解析】
(1)根據(jù)垂徑定理,即可得=,根據(jù)同弧所對的圓周角相等,證出∠BAC=∠BCD,再根據(jù)等邊對等角,即可得到∠BAC=∠ACO,從而證出∠ACO=∠BCD;
(2)根據(jù)垂徑定理和勾股定理列出方程,求出圓的半徑,即可求出圓的面積.
解:(1)∵AB為⊙O的直徑,AB⊥CD,
∴=.
∴∠BAC=∠BCD.
∵OA=OC,
∴∠BAC=∠ACO.
∴∠ACO=∠BCD;
(2)∵AB為⊙O的直徑,AB⊥CD,
∴CE=CD=×24=12(cm).
在Rt△COE中,設(shè)CO為r,則OE=r﹣8,
根據(jù)勾股定理得:122+(r﹣8)2=r2
解得r=13.
∴S⊙O =π×132=169π(cm2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘游輪在A處測得北偏東45°的方向上有一燈塔B.游輪以20海里/時(shí)的速度向正東方向航行2小時(shí)到達(dá)C處,此時(shí)測得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結(jié)果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,MN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),ΔMCN面積為2cm?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請說明理由;
(3)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,然后解后面的問題.
材料:一個(gè)三位自然數(shù) (百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c),若滿足a+c=b,則稱這個(gè)三位數(shù)為“歡喜數(shù)”,并規(guī)定F()=ac.如374,因?yàn)樗陌傥簧蠑?shù)字3與個(gè)位數(shù)字4之和等于十位上的數(shù)字7,所以374是“歡喜數(shù)”,∴F(374)=3×4=12.
(1)對于“歡喜數(shù)”,若滿足b能被9整除,求證:“歡喜數(shù)”能被99整除;
(2)已知有兩個(gè)十位數(shù)字相同的“歡喜數(shù)”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠D=90°,AD=2,BC=12,DC=10,若在邊DC上有點(diǎn)P,使△PAD與△PBC相似,則這樣的點(diǎn)P有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=6cm,AD=10cm,點(diǎn)E、F在矩形ABCD的邊AB、AD上運(yùn)動(dòng),將△AEF沿EF折疊,使點(diǎn)A′在BC邊上,當(dāng)折痕EF移動(dòng)時(shí),點(diǎn)A′在BC邊上也隨之移動(dòng).則A′C的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到商場購買某個(gè)牌子的鉛筆支,用了元(為整數(shù)).后來他又去商場時(shí),發(fā)現(xiàn)這種牌子的鉛筆降階,于是他比上一次多買了支鉛筆,用了元錢,那么小明兩次共買了鉛筆________支.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到△AED,點(diǎn)B、C的對應(yīng)點(diǎn)分別是E、D.
(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);
(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】傳統(tǒng)的端午節(jié)即將來臨,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠價(jià)為每只4元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿足如下關(guān)系:
y=
(1)李明第幾天生產(chǎn)的粽子數(shù)量為280只?
(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,p與x之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價(jià)-成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com