兩個(gè)全等的含30°,60°角的三角板ADE和三角板ABC如圖所示放置,E,A,C三點(diǎn)在一條直線上,連結(jié)BD,取BD的中點(diǎn)M,連結(jié)ME,MC,試判斷△EMC的形狀,并說明理由。
解:△EMC是等腰直角三角形;
連接AM,由題意得:DE=AC,∠DAE+∠BAC=90°,
∴∠DAB=90°,
又∵DM=MB,
∴MA=DB=DM,∠MAD=∠MAB=45°;
∴∠MDE=∠MAC=105°,
∴∠DMA=90°,
∴△EDM≌△CAM,
∴∠DME=∠AMC,EM=MC,
又∠DME+∠EMA=90°,
∴∠EMA+∠AMC=90°,
∴CM⊥EM,
∴△EMC是等腰直角三角形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)兩個(gè)全等的含30°,60°角的三角板ADE和三角板ABC如圖所示放置,E,A,C三點(diǎn)在一條直線上,連接BD,取BD的中點(diǎn)M,連接ME,MC.試判斷△EMC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用兩個(gè)全等的含30°角的直角三角形制作如圖1所示的兩種卡片,兩種卡片中扇形的半徑均為1,且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn),按先A后B的順序交替擺放A、B兩種卡片得到圖2所示的圖案.若擺放這個(gè)圖案共用兩種卡片
8張,則這個(gè)圖案中陰影部分的面積之和為
π
π
; 若擺放這個(gè)圖案共用兩種卡片(2n+1)張( n為正整數(shù)),則這個(gè)圖案中陰影部分的面積之和為
3n+2
12
π
3n+2
12
π
.(結(jié)果保留π )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用兩個(gè)全等的含30°角的直角三角形制作如圖A、B所示的兩種卡片,兩種卡片中扇形的半徑均為2,且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn),按先A后B的順序交替擺放A、B兩種卡片得到如圖所示的圖案.若擺放這個(gè)圖案共用兩種卡片12張,則這個(gè)圖案中陰影部分的面積之和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用兩個(gè)全等的含30°角的直角三角形,長(zhǎng)直角邊長(zhǎng)為2.制作如圖1所示的兩種卡片,兩種卡片中扇形的半徑均為1,且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn),按先A后B的順序交替擺放A、B兩種卡片得到圖2所示的圖案.若擺放這個(gè)圖案共用兩種卡片8張,則這個(gè)圖案中陰影部分的之和為
π
π
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用兩個(gè)全等的含30°角的直角三角形制作如圖1所示的兩種卡片,兩種卡片中扇形的 半徑均為1, 且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn), 按先AB 的順序交替擺放A、B兩種卡片得到圖2所示的圖案. 若擺放這個(gè)圖案共用兩種卡片8張,則這個(gè)圖案中陰影部分的面積之和為           ; 若擺放這個(gè)圖案共用兩種卡片(2n+1)張( n為正整數(shù)), 則這個(gè)圖案中陰影部分的面積之和為         . (結(jié)果保留p )

 

查看答案和解析>>

同步練習(xí)冊(cè)答案