【題目】如圖,已知矩形ABCD中,AB=4,AD=m,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),在邊DA上以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),連接CP,作點(diǎn)D關(guān)于直線PC的對(duì)稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).

(1)若m=6,求當(dāng)P,E,B三點(diǎn)在同一直線上時(shí)對(duì)應(yīng)的t的值.

(2)已知m滿足:在動(dòng)點(diǎn)P從點(diǎn)D到點(diǎn)A的整個(gè)運(yùn)動(dòng)過程中,有且只有一個(gè)時(shí)刻t,使點(diǎn)E到直線BC的距離等于3,求所有這樣的m的取值范圍.

【答案】(1) ;(2) ≤m<4

【解析】

試題分析:(1)只要證明ABD∽△DPC,可得,由此求出PD即可解決問題;

(2)分兩種情形求出AD的值即可解決問題:如圖2中,當(dāng)點(diǎn)P與A重合時(shí),點(diǎn)E在BC的下方,點(diǎn)E到BC的距離為3.如圖3中,當(dāng)點(diǎn)P與A重合時(shí),點(diǎn)E在BC的上方,點(diǎn)E到BC的距離為3

試題解析:(1)如圖1中,

四邊形ABCD是矩形,

∴∠ADC=A=90°,

∴∠DCP+CPD=90°,

∵∠CPD+ADB=90°,

∴∠ADB=PCD,

∵∠A=CDP=90°,

∴△ABD∽△DPC,

,

,

PD=,

t=s時(shí),B、E、D共線.

(2)如圖2中,當(dāng)點(diǎn)P與A重合時(shí),點(diǎn)E在BC的下方,點(diǎn)E到BC的距離為3.

作EQBC于Q,EMDC于M.則EQ=3,CE=DC=4

易證四邊形EMCQ是矩形,

CM=EQ=3,M=90°,

EM=

∵∠DAC=EDM,ADC=M,

∴△ADC∽△DME,

,

AD=4,

如圖3中,當(dāng)點(diǎn)P與A重合時(shí),點(diǎn)E在BC的上方,點(diǎn)E到BC的距離為3.

作EQBC于Q,延長QE交AD于M.則EQ=3,CE=DC=4

在RtECQ中,QC=DM=,

DME∽△CDA,

,

AD=,

綜上所述,在動(dòng)點(diǎn)P從點(diǎn)D到點(diǎn)A的整個(gè)運(yùn)動(dòng)過程中,有且只有一個(gè)時(shí)刻t,使點(diǎn)E到直線BC的距離等于3,這樣的m的取值范圍≤m<4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)的圖象與軸有兩個(gè)公共點(diǎn),那么一元二次方程有兩個(gè)不相等的實(shí)根,請(qǐng)根據(jù)你對(duì)這句話的理解,解決下列問題:若、)是關(guān)于的方程的兩根,且、、的大小關(guān)系是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線yx+3x軸、y軸分別相于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AO上.

將△CBO沿BC折疊后,點(diǎn)O恰好落在AB邊上點(diǎn)D

1)求直線BC的解析式;

2)求點(diǎn)D的坐標(biāo);

3P為平面內(nèi)一動(dòng)點(diǎn),且以A、B、C、P為頂點(diǎn)的四邊形為平行四邊形,直接寫出點(diǎn)P坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖,在RtABC中,∠ACB=90°BAC=30°.

動(dòng)手操作:(1)若以直角邊AC所在的直線為對(duì)稱軸.將RtABC作軸對(duì)稱變換,請(qǐng)你在原圖上作出它的對(duì)稱圖形:

觀察發(fā)現(xiàn):(2)RtABC和它的對(duì)稱圖形組成了什么圖形?你最準(zhǔn)確的判斷是   

合作交流:(3)根據(jù)上面的圖形,請(qǐng)你猜想直角邊BC與斜邊AB的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將直角三角形的直角頂點(diǎn)放在點(diǎn)處,兩直角邊與坐標(biāo)軸交于如圖所示的點(diǎn)和點(diǎn),則的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為地鐵調(diào)價(jià)后的計(jì)價(jià)表.調(diào)價(jià)后小明、小偉從家到學(xué)校乘地鐵分別需要4元和3元.由于刷卡坐地鐵有優(yōu)惠因此,他們平均每次實(shí)付3.6元和2.9元.已知小明從家到學(xué)校乘地鐵的里程比小偉從家到學(xué)校的里程多5 km,且小明每千米享受的優(yōu)惠金額是小偉的2求小明和小偉從家到學(xué)校乘地鐵的里程分別是多少千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.

(1)求證:四邊形ABFC是菱形;

(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC外接圓O上的點(diǎn),在以下判斷中,不正確的是

A、當(dāng)弦PB最長時(shí),ΔAPC是等腰三角形 B、當(dāng)ΔAPC是等腰三角形時(shí),POAC

C、當(dāng)POAC時(shí),ACP=300 D、當(dāng)ACP=300時(shí),ΔPBC是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的圖象反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后又原路返回,順路到文具店去買筆,然后散步回家.其中x表示時(shí)間,y表示張強(qiáng)離家的距離.根據(jù)圖象回答:

1)體育場離張強(qiáng)家的多遠(yuǎn)?張強(qiáng)從家到體育場用了多長時(shí)間?

2)體育場離文具店多遠(yuǎn)?

3)張強(qiáng)在文具店逗留了多久?

4)計(jì)算張強(qiáng)從文具店回家的平均速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案