【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,若四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且∠DCB=∠DAB,則∠DAB=°.
(2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長?
【答案】
(1)120
(2)證明:∵∠DAB=60°,AC平分∠DAB,
∴∠DAC=∠CAB=30°,
∴∠D+∠ACD=180°﹣30°=150°,
∵∠BCD=∠ACD+∠ACB=150°,
∴∠D=∠ACB,
∴△ADC∽△ACB.
∴AD:AC=AC:AB,
∴AC2=ABAD,
∴四邊形ABCD為“可分四邊形”
(3)解:∵四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,
∴AC2=ABAD,∠DAC=∠CAB,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠ACB=90°,
∴AB= = =2 ,
∴AD= = = .
【解析】(1)解:如圖所示:
∵AC平分∠DAB,
∴∠1=∠2,
∵AC2=ABAD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠4,
∵∠DCB=∠DAB,
∴∠DCB=∠3+∠4=2∠1,
∵∠1+∠D+∠4=180°,
∴∠1+2∠1=180°,
解得:∠1=60°,
∴∠DAB=120°;
所以答案是:120;
【考點精析】關于本題考查的三角形的內(nèi)角和外角和勾股定理的概念,需要了解三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,AB=AC,D為BC上一點,E為AC上一點,AD=AE.
(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC= °.
(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD= °,∠CDE= °.
(3)設∠BAD=α,∠CDE=β猜想α,β之間的關系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為△ABC的內(nèi)心,延長AP交△ABC的外接圓于D,在AC延長線上有一點E,滿足AD2=ABAE.
求證:DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是邊BC上一點,AP與BD交于點M,DP與AC交于點N.
①若點P為BC的中點,則AM:PM=2:1;
②若點P為BC的中點,則四邊形OMPN的面積是8;
③若點P為BC的中點,則圖中陰影部分的總面積為28;
④若點P在BC的運動,則圖中陰影部分的總面積不變.
其中正確的是 . (填序號即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把棱長為1cm的若干個小正方體擺放成如圖所示的幾何體,然后在露出的表面上涂上顏色(不含底面)
(1)該幾何體中有 小正方體?
(2)其中兩面被涂到的有 個小正方體;沒被涂到的有 個小正方體;
(3)求出涂上顏色部分的總面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在數(shù)軸上A,B兩點對應的數(shù)分別是6,-6,∠DCE=90°(C與O重合,D點在數(shù)軸的正半軸上)
(1)如圖1,若CF平分∠ACE,則∠AOF=_______;
(2)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t(0<t<3)個單位后,再繞點頂點C逆時針旋轉30t度,作CF平分∠ACE,此時記∠DCF=α.
①當t=1時,α=_______
②猜想∠BCE和α的數(shù)量關系,并證明;
(3)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸的正半軸向右平移t(0<t<3)個單位,再繞點頂點C逆時針旋轉30t度,作CF平分∠ACE,此時記∠DCF=α,與此同時,將∠D1C1E1沿數(shù)軸的負半軸向左平移t(0<t<3)個單位,再繞點頂點C1順時針旋轉30t度,作C1F1平分∠AC1E1,記∠D1C1F1=β,若α與β滿足|α-β|=40°,請直接寫出t的值為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,、的交點為,現(xiàn)作如下操作:
第一次操作,分別作和的平分線,交點為,
第二次操作,分別作和的平分線,交點為,
第三次操作,分別作和的平分線,交點為,
…
第次操作,分別作和的平分線,交點為.
若度,那等于__________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P( +1, ﹣1)在雙曲線y= (x>0)上.
(1)求k的值;
(2)若正方形ABCD的頂點C,D在雙曲線y= (x>0)上,頂點A,B分別在x軸和y軸的正半軸上,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com