如圖,矩形ABCD中,P為CD中點(diǎn),點(diǎn)Q為AB上的動點(diǎn)(不與A,B重合).過Q作QM⊥PA于M,QN⊥PB于N.設(shè)AQ的長度為x,QM與QN的長度和為y.則能表示y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.
【答案】分析:根據(jù)三角形面積得出S△PAB=PE•AB;S△PAB=S△PQB+S△PAQ=QN•PB+PA•MQ,進(jìn)而得出y=,即可得出答案.
解答:解:連接PQ,作PE⊥AB垂足為E,
∵過Q作QM⊥PA于M,QN⊥PB于N
∴S△PAB=PE•AB;
S△PAB=S△PQB+S△PAQ=QN•PB+PA•MQ,
∵矩形ABCD中,P為CD中點(diǎn),
∴PA=PB,
∵QM與QN的長度和為y,
∴S△PAB=S△PQB+S△PAQ=QN•PB+PA•MQ=PB(QM+QN)=PB•y,
∴S△PAB=PE•AB=PB•y,
∴y=,∵PE=AD,∴PE,AB,PB都為定值,
∴y的值為定值,符合要求的圖形為D,
故選:D.
點(diǎn)評:此題主要考查了動點(diǎn)函數(shù)的圖象,根據(jù)已知得出y=,再利用PE=AD,PB,AB,PB都為定值是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對角線上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊答案