精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtABC中,C=90°,ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

(1)求證:BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長度.

【答案】(1)、證明過程見解析 (2)、3

【解析】

試題分析:(1)、根據折疊的性質得出C=AED=90°,利用DEB=C,B=B證明三角形相似即可;

(2)、由折疊的性質知CD=DE,AC=AE.根據題意在RtBDE中運用勾股定理求DE,進而得出AD即可.

試題解析:(1)、∵∠C=90°,ACD沿AD折疊, ∴∠C=AED=90°, ∴∠DEB=C=90°,

∵∠B=B, ∴△BDE∽△BAC;

(2)、由勾股定理得,AB=10. 由折疊的性質知,AE=AC=6,DE=CD,AED=C=90°

BE=ABAE=106=4, 在RtBDE中,由勾股定理得, DE2+BE2=BD2, 即CD2+42=(8CD)2,

解得:CD=3, 在RtACD中,由勾股定理得AC2+CD2=AD2, 即32+62=AD2, 解得:AD=3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】8分) 如圖,點A,D,B,E在同一條直線上,且AD=BE,A=FDE, .請?zhí)砑右粋適當條件使△ABC≌△DEF.并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列運算正確的是( 。
A.x4+x2=x6
B.x2x3=x6
C.(x23=x6
D.x2﹣y2=(x﹣y)2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先閱讀下列材料,然后解后面的問題.

材料:一個三位自然數 (百位數字為a,十位數字為b,個位數字為c),若滿足a+c=b,則稱這個三位數為歡喜數,并規(guī)定F=ac.如374,因為它的百位上數字3與個位數字4之和等于十位上的數字7,所以374歡喜數,F374=3×4=12

1)對于歡喜數,若滿足b能被9整除,求證:歡喜數能被99整除;

2)已知有兩個十位數字相同的歡喜數”m,nmn),若Fm﹣Fn=3,求m﹣n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD紙片,A=120°,AB=4,BC=5,剪掉兩個角后,得到六邊形AEFCGH ,它的每個內角都是120°,且EF=1,HG=2,則這個六邊形的周長為( )

A. 12 B. 15 C. 16 D. 18

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABC中,中線BE,CD交于點O,FG分別是OB,OC的中點,連接DF,FG,EGDE,求證:DFEG.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC是邊長為3的等邊三角形,BDC是等腰三角形,且BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則AMN的周長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中正確的是( )
A.23表示2×3的積
B.任何一個有理數的偶次冪是正數
C.-32 與 (-3)2互為相反數
D.一個數的平方是 ,這個數一定是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:
(1)(+4)×(-5);
(2)(-0.125)×(-8);
(3)(-2)×(-);
(4)0×(-13.52);
(5)(-3.25)×(+
(6)-4.8×(-1.2)

查看答案和解析>>

同步練習冊答案