【題目】如圖本題圖①,在等腰Rt中, ,,為線段上一點,以為半徑作于點,連接、,線段、、的中點分別為、、.

(1)試探究是什么特殊三角形?說明理由;

(2)將繞點逆時針方向旋轉到圖②的位置,上述結論是否成立?并證明結論;

(3),繞點在平面內自由旋轉,求的面積y的最大值與最小值的差.

【答案】(1)為等腰直角三角形;(2)仍然為等腰直角三角形;(3)的最大值與最小值的差為:

【解析】分析:(1)由OA=OB,OP=OQ可得AP=BQ,再利用三角形的中位線可得△DMN是等腰直角三角形;

(2)由旋轉的性質得∠AOP=∠BOQ,從而可證△AOP≌△BOQ,由三角形中位線的性質可得DM=DN,根據(jù)平行線的性質和三角形內角和可證∠MDN=90°,從而結論得證;

(3)如圖,設⊙于點,延長線于點,連接,,.由三角形三邊的關系得,由三角形的面積公式得,從而可求出y的最大值和最小值,然后相減即可.

詳解:(1)為等腰直角三角形

分別為的中點,

同理

.

為等腰直角三角形.

(2)如圖,仍然為等腰直角三角形.

證明:由旋轉的性質, .

,

.

分別為的中點,

同理,

在等腰Rt,

同理:

= .

為等腰直角三角形.

(3), 如圖,設⊙于點,延長線于點,

連接

,

同理

由題意,,

的最小值為. 同理,最大值為

從而得的最大值與最小值的差為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織學生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機取部分學生書法作品的評定結果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:

根據(jù)上述信息完成下列問題:

(1)求這次抽取的樣本的容量;

(2)請在圖②中把條形統(tǒng)計圖補充完整;

(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點E.

(1)求證:△ABD≌△EBD;

(2)過點E作EF∥DA,交BD于點F,連接AF.求證:四邊形AFED是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文化用品商店用1 000元購進一批晨光套尺,很快銷售一空;商店又用1 500元購進第二批該款套尺,購進時單價是第一批的倍,所購數(shù)量比第一批多100套.

1)求第一批套尺購進時單價是多少?

2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù),當時,函數(shù)有最大值5.

(1)求此二次函數(shù)圖象與坐標軸的交點;

(2)將函數(shù)圖象x軸下方部分沿x軸向上翻折,得到的新圖象與直線恒有四個交點,從左到右,四個交點依次記為,當以為直徑的圓與軸相切時,求的值.

(3)若點(2)中翻折得到的拋物線弧部分上任意一點,若關于m的一元二次方程 恒有實數(shù)根時,求實數(shù)k的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線分別從A、B兩地同時出發(fā)勻速前往C地(B在A、C兩地的途中).設甲、乙兩車距A地的路程分別為y、y(千米),行駛的時間為x(小時),y、y與x之間的函數(shù)圖象如圖所示.

(1)直接寫出y、y與x之間的函數(shù)表達式;

(2)如圖,過點(1,0)作x軸的垂線,分別交y、y的圖象于點M,N.求線段MN的長,并解釋線段MN的實際意義;

(3)在乙行駛的過程中,當甲、乙兩人距A地的路程差小于30千米時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用火柴棒按下列方式搭建三角形:

三角形個數(shù)

1

2

3

4

火柴棒根數(shù)

3

5

7

9

(1)當三角形的個數(shù)為n時,火柴棒的根數(shù)是多少?

(2)求當n100時,有多少根火柴棒?

(3)當火柴棒的根數(shù)為2017時,三角形的個數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七(1)班的學習小組學習“線段中點內容時,得到一個很有意思的結論,請跟隨他們一起思考.

1)發(fā)現(xiàn):

如圖1,線段,點在線段上,當點是線段和線段的中點時,線段的長為_________;若點在線段的延長線上,其他條件不變(請在圖2中按題目要求將圖補充完整),得到的線段與線段之間的數(shù)量關系為_________.

2)應用:

如圖3,現(xiàn)有長為40米的拔河比賽專用繩,其左右兩端各有一段()磨損了,磨損后的麻繩不再符合比賽要求. 已知磨損的麻繩總長度不足20. 小明認為只利用麻繩和一把剪刀(剪刀只用于剪斷麻繩)就可以得到一條長20米的拔河比賽專用繩. 小明所在學習小組認為此法可行,于是他們應用“線段中點”的結論很快做出了符合要求的專用繩,請你嘗試著“復原”他們的做法:

①在圖中標出點、點的位置,并簡述畫圖方法;

②請說明①題中所標示點的理由.

查看答案和解析>>

同步練習冊答案