精英家教網 > 初中數學 > 題目詳情

【題目】如圖16,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線y=+k與扇形OAB的邊界總有兩個公共點,則實數k的取值范圍是________.

【答案】-2k

【解析】由圖可知,AOB=45°直線OA的解析式為y=x,聯立 ,消掉y得,x22x+2k=0,=b24ac=224×1×2k=0,即k= 時,拋物線與OA有一個交點,此交點的橫坐標為1,B的坐標為(2,0),OA=2,A的坐標為(, ),交點在線段AO上;當拋物線經過點B2,0)時, ×4+k=0,解得k=2要使拋物線y= x2+k與扇形OAB的邊界總有兩個公共點,實數k的取值范圍是2k .故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:|a﹣2|+(b+1)2=0,求2ab2﹣a2b的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算0.78×102016﹣4.2×102015的結果用科學記數法可表示為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】關于x的一元二次方程x2+2x﹣2m+1=0的兩實數根之積為正,求實數m的取值范圍?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:mx,y滿足:(1;(22a2by+17b3a2是同類項.

求代數式:2x2﹣6y2+m(xy﹣9y2)﹣(3x2﹣3xy+7y2)的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正多邊形的一個外角等于60°,則該正多邊形的邊數為(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y2x125的頂點坐標是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某車間有16名工人,每人每天可加工甲種零件5個或乙種零件4個.在這16名工人中,一部分人加工甲種零件,其余的加工乙種零件.已知每加工一個甲種零件可獲利16元,每加工一個乙種零件可獲利24元.若此車間一共獲利1440元,求這一天有幾個工人加工甲種零件.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,拋物線經過點B(-2,4).

(1)求a的值;

(2)作Rt△OAB,使∠BOA=90°,且OB=2OA,求點A坐標;

(3)在(2)的條件下,過點A作直線ACx軸于點C,交拋物線于點D,將該拋物線向左或向右平移tt>0)個單位長度,記平移后點D的對應點為D′,點B的對應點為B′.當CD′+OB′的值最小時,請直接寫出t的值和平移后相應的拋物線解析式.

查看答案和解析>>

同步練習冊答案