在?ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

【答案】分析:(1)根據(jù)AF平分∠BAD,可得∠BAF=∠DAF,利用四邊形ABCD是平行四邊形,求證∠CEF=∠F.即可
(2)根據(jù)∠ABC=90°,G是EF的中點(diǎn)可直接求得.
(3)分別連接GB、GC,求證四邊形CEGF是平行四邊形,再求證△ECG是等邊三角形.
由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求證△BEG≌△DCG,然后即可求得答案
解答:(1)證明:如圖1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.

(2)解:連接GC、BG,
∵四邊形ABCD為平行四邊形,∠ABC=90°,
∴四邊形ABCD為矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF為等腰直角三角形,
∵G為EF中點(diǎn),
∴EG=CG=FG,CG⊥EF,
∵△ABE為等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG與△DCG中,

∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGE+∠DGE=90°,
∴△DGB為等腰直角三角形,
∴∠BDG=45°,

(3)解:延長AB、FG交于H,連接HD.
∵AD∥GF,AB∥DF,
∴四邊形AHFD為平行四邊形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF為等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四邊形AHFD為菱形
∴△ADH,△DHF為全等的等邊三角形
∴DH=DF,∠BHD=∠GFD=60°
∵FG=CE,CE=CF,CF=BH,
∴BH=GF
在△BHD與△GFD中,

∴△BHD≌△GFD,
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°
點(diǎn)評:此題主要考查平行四邊形的判定方法,全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),菱形的判定與性質(zhì)等知識點(diǎn),應(yīng)用時要認(rèn)真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、在?ABCD中,若∠A=3∠B,則∠D=
45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,E、F分別為邊AB、CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BEDF是平行四邊形;
(3)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,EF∥AB,MN∥BC,MN與EF交于點(diǎn)O,且O點(diǎn)在對角線上,圖中面積相等的四邊形有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,BD為對角線,EF垂直平分BD分別交AD、BC的于點(diǎn)E、F,交BD于點(diǎn)O.

(1)試說明:BF=DE;
(2)試說明:△ABE≌△CDF;
(3)如果在?ABCD中,AB=5,AD=10,有兩動點(diǎn)P、Q分別從B、D兩點(diǎn)同時出發(fā),沿△BAE和△DFC各邊運(yùn)動一周,即點(diǎn)P自B→A→E→B停止,點(diǎn)Q自D→F→C→D停止,點(diǎn)P運(yùn)動的路程是m,點(diǎn)Q運(yùn)動的路程是n,當(dāng)四邊形BPDQ是平行四邊形時,求m與n滿足的數(shù)量關(guān)系.(畫出示意圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在BC的延長線上,且BE=CF.
(1)求證:∠BAE=∠CDF.
(2)判斷四邊形AEFD的形狀并說明理由.

查看答案和解析>>

同步練習(xí)冊答案