【題目】如圖1,A,B分別在射線OMON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側作等腰直角三角形,分別是△OAP,△OBQ,點C,DE分別是OA,OBAB的中點.

(1)求證:四邊形OCED為平行四邊形;

(2)求證:PCE≌△EDQ

(3)如圖2,延長PC,QD交于點R.若∠MON=150°,求證:ABR為等邊三角形。

【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析

【解析】

1)利用兩邊平行且相等證明即可

(2)根據(jù)等腰直角三角形的性質、平行四邊形的性質得到∠PCE=EDQ,根據(jù)邊角邊公理證明即可;

3)連結RO,根據(jù)線段垂直平分線的判定定理和性質定理得到AR=OR=BR,根據(jù)等邊三角形的判定定理證明即可.

(1)CAO中點,EAB中點

CE平行且等于AB

OD=AB,

CE平行且等于OD,

∴四邊形OCED為平行四邊形

(2)證明:OAP是等腰直角三角形,且點COA的中點,

PCAPCO都是等腰直角三角形,

PC=AC=OC,PCO=90°

同理:QD=OD=BD,QDO=90°

∵四邊形CODE是平行四邊形

CE=ODED=OC,

ED=PC,QD=CE

CEON.DEOM,

∴∠ACE=AOD,BDE=AOD

∴∠ACE=BDE

∴∠OCE=ODE,

∴∠OCE+PCO=ODE+QDO

即∠PCE=EDQ

PCEEDQ

∴△PCE≌△EDQ;

(3)連結RO,

OAPOBQ均為等腰直角三角形,C.D分別是OA、OB的中點

PRQR分別是OA,OB的垂直平分線

AR=OR=BR

∴∠ARC=ORC,ORD=BRD

∵∠RCO=RDO=90°,COD=150°

∴∠CRD=30°

.ARB=60°

ARB是等邊三角形。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在初中階段的函數(shù)學習中,我們經(jīng)歷了“確定函數(shù)的表達式——利用函數(shù)圖象研究其性質一一運用函數(shù)解決問題"的學習過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學的函數(shù)圖象.同時,我們也學習了絕對值的意義.結合上面經(jīng)歷的學習過程,現(xiàn)在來解決下面的問題在函數(shù)中,當時,時,

1)求這個函數(shù)的表達式;

2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數(shù)的圖象井并寫出這個函數(shù)的一條性質;

3)已知函的圖象如圖所示,結合你所畫的函數(shù)圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等腰直角三角形,ABAC,D為平面內(nèi)的任意一點,且滿足CDAC,若△ADB是以AD為腰的等腰三角形,則∠CDB的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2-2ax-3aa≠0)頂點為P,且該拋物線與x軸交于A,B兩點(點A在點B的左側).我們規(guī)定:拋物線與x軸圍成的封閉區(qū)域稱為G區(qū)域(不包含邊界);橫、縱坐標都是整數(shù)的點稱為整點.

1)求拋物線y=ax2-2ax-3a頂點P的坐標(用含a的代數(shù)式表示);

2)如果拋物線y=ax2-3ax-3a經(jīng)過(1,3).

①求a的值;

②在①的條件下,直接寫出G區(qū)域內(nèi)整點的個數(shù).

3)如果拋物線y=ax2-2ax-3aG區(qū)域內(nèi)有4個整點,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角三角形ACB,AC=3,BC=4,過直角頂點CCA1AB,垂足為A1,再過A1A1C1BC,垂足為C1;過CA1C1A2AB,垂足為A2,再過A2A2C2BC,垂足為C2;,這樣一直做下去,得到一組線段A1C1C2A2,則線段AnCn=___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊上的中點,BEACF,連接DF,下列4個結論:①△AEF∽△CAB;②CF2AF;③DFDC;④tanCAD,其中結論正確的序號是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是正方形,等腰直角△AEF的直角頂點EBC上,(不與B、C重合),FMAD,交射線AD于點M

(1)如圖1,當點E在邊BC的延長線上,點M在邊AD上時,請直接寫出線段ABBEAM之間的數(shù)量關系,不需要證明.

(2)如圖2,當點E在邊BC上,點M在邊AD的延長線上時,請寫出線段AB,BE,AM之間的數(shù)量關系,并且證明你的結論.

(3)如圖3,當點E在邊CB的延長線上,點M在邊AD上時,若BE,∠AFM15°,求AM的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交x軸于點AB(點A在點B的左側).

1)求點A,B的坐標,并根據(jù)該函數(shù)圖象寫出y0x的取值范圍;

2)把點B向上平移m個單位得點B1.若點B1向左平移n個單位,將與該二次函數(shù)圖象上的點B2重合;若點B1向左平移(n6)個單位,將與該二次函數(shù)圖象上的點B3重合.已知m0,n0,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).

1)設每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求ab的值;

2)設這批淡水魚放養(yǎng)t天后的質量為mkg),銷售單價為y/kg.根據(jù)以往經(jīng)驗可知:mt的函數(shù)關系為;yt的函數(shù)關系如圖所示.

①分別求出當0t5050t100時,yt的函數(shù)關系式;

②設將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額-總成本)

查看答案和解析>>

同步練習冊答案