如圖,在直角坐標系中,⊙Py軸相切于點C,與x軸交于Ax1,0),Bx2,0)兩點,其中x1,x2是方程x2-10x+16=0的兩個根,且x1<x2,連接BC,AC.

(1)求過AB、C三點的拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點Q,使△QAC的周長最小,若存在求出點Q的坐標,若不存在,請說明理由;
(3)點M在第一象限的拋物線上,當△MBC的面積最大時,求點M的坐標.
(1)過A、B、C三點的拋物線的解析式(2)存在;Q(5,)(3)點M的坐標為(4,2)

試題分析:(1)解:解方程x2-10x+16=0,由x1<x2,
x1=2,x2=8
∴A(2,0)  B(8,0);      
OA=2,OB=8
∵OC切⊙P于點C
∴∠ACO=∠ABC
∴ΔOCA∽OBC
∴OC2=OA·OB=16,OC>0
∴OC=4 ∴C(0,-4)         
設(shè)過A,B,C三點的拋物線的解析式為y=a(x-2)(x-8)
∴16a=-4 ∴a=
∴y=(x-2)(x-8)=        
(2)存在. ∵A,B兩點關(guān)于拋物線的對稱軸對稱,
∴直線BC與對稱軸的交點即為點Q.      
用待定系數(shù)法易求直線BC的解析式為     
時,
∴Q(5,)     
(3)過點M作ME⊥BC與E,交軸于點D,作MN⊥CD于N
∴∠D+∠DCE=90°,而∠OBC+∠OCB=90°
∴∠D=∠OBC=∠OCA
∴ΔDMN∽ΔCAO∽ΔDCE          
∵OA=2,OC=4  ∴AC=
,        
∴MN=,DN=,DM=
而ON=   
DC=
∴DE= 
∴ME=DE-DM=
     
·

          
即當時,ΔBCM的面積最大.
=中,時,
點M的坐標為(4,2)          
點評:本題考查直線與圓相切,一元二次方程,拋物線,掌握直線與圓相切的概念和性質(zhì),會求一元二次方程的解,會用待定系數(shù)法求函數(shù)解析式
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(點在點的左側(cè)),與軸交于點,且,頂點為

(1)求出一元二次函數(shù)的關(guān)系式;
(2)點為線段上的一個動點,過點軸的垂線,垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)在(2)的條件下,當點坐標是           時,為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),在平面直角坐標系中,矩形ABCOB點坐標為(4,3),拋物線yx2bxc經(jīng)過矩形ABCO的頂點B、CDBC的中點,直線ADy軸交于E點,與拋物線yx2bxc交于第四象限的F點.

(1)求該拋物線解析式與F點坐標;
(2)如圖,動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;
同時,動點M從點A出發(fā),沿線段AE以每秒個單位長度的速度向終點E運動.過
PPHOA,垂足為H,連接MP,MH.設(shè)點P的運動時間為t秒.
①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,求出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某市場銷售一批名牌襯衫,平均每天可銷售20件,每件盈利40元。為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當降價措施。經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件。求:
(1)若商場平均每天要盈利1200元,且讓顧客感到實惠,每件襯衫應(yīng)降價多少元?
(2)要使商場平均每天盈利最多,請你幫助設(shè)計降價方案。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列各圖中有可能是函數(shù),圖象的是

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)配方后為,則的值分別為(   )
A.0,6B.0,2C.4,6D.4,2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則函數(shù)值時,自變量的取值范圍是( ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB =" 2OA" = 4.

(1)求該拋物線的函數(shù)表達式;
(2)設(shè)P是(1)中拋物線上的一個動點,以P為圓心,R為半徑作⊙P,求當⊙P與拋物線的對稱軸lx軸均相切時點P的坐標.
(3)動點E從點A出發(fā),以每秒1個單位長度的速度向終點B運動,動點F從點B出發(fā),以每秒個單位長度的速度向終點C運動,過點E作EG//y軸,交AC于點G(如圖2).若E、F兩點同時出發(fā),運動時間為t.則當t為何值時,△EFG的面積是△ABC的面積的?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線軸于點,交軸于點,在軸上方的拋物線上有兩點,它們關(guān)于軸對稱,點軸左側(cè).于點,于點,四邊形與四邊形的面積分別為6和10,則的面積之和為    

查看答案和解析>>

同步練習冊答案