(2011•營口)如圖,甲、乙兩個可以自由轉(zhuǎn)動的均勻的轉(zhuǎn)盤,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標(biāo)有相應(yīng)的數(shù)字,同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為m,乙轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為n(若指針指在邊界線上時,重轉(zhuǎn)一次,直到指針都指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法求出|m+n|>1的概率;
(2)直接寫出點(m,n)落在函數(shù)y=-
1x
圖象上的概率.
分析:(1)根據(jù)題意列表,然后根據(jù)列表求得所有可能的結(jié)果與|m+n|>1的情況,根據(jù)概率公式求解即可.
(2)根據(jù)(1)中的樹狀圖,即可求得點(m,n)落在函數(shù)y=-
1
x
圖象上的情況,由概率公式即可求得答案.
解答:解:(1)表格如下:
  轉(zhuǎn)盤乙
轉(zhuǎn)盤甲 -1 0 1 2
-1 (-1,-1) (-1,0) (-1,1) (-1,2)
-
1
2
(-
1
2
,-1)
(-
1
2
,0)
(-
1
2
,1)
(-
1
2
,2)
1 (1,-1) (1,0) (1,1) (1,2)
(6分)
由表格可知,所有等可能的結(jié)果有12種,其中|m+n|>1的情況有5種,(7分)
所以|m+n|>1的概率為P1=
5
12
;(8分)

(2)點(m,n)在函數(shù)y=-
1
x
上的概率為P2=
3
12
=
1
4
.(10分)
點評:此題為一次函數(shù)與概率的綜合,考查的是用列表法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.反比例函數(shù)上的點的橫縱坐標(biāo)的積為反比例函數(shù)的比例系數(shù).第二象限點的符號為(-,+).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•營口)如圖(1),直線y=-x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點M,使以C、P、M為頂點的三角形為等腰三角形?若存在,請直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由;
(3)連接AC,在x軸上是否存在點Q,使以P、B、Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由;
(4)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值.
(圖(2)、圖(3)供畫圖探究)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•營口)如圖,將一正方形紙片按下列順序折疊,然后將最后折疊的紙片剪出一個以O(shè)為頂點的等腰三角形,那么剪出的等腰三角形全部展開鋪平后得到的平面圖形一定是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•營口)如圖,在平面直角坐標(biāo)系中,有A(1,2),B(3,3)兩點,現(xiàn)另取一點C(a,1),當(dāng)a=
5
3
5
3
時,AC+BC的值最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•營口)如圖,在平面直角坐標(biāo)系中,△AOB為直角三角形,A(0,4),B(-3,0).按要求解答下列問題:
(1)在平面直角坐標(biāo)系中,先將Rt△AOB向上平移6個單位,再向右平移3個單位,畫出平移后的Rt△A1O1B1;
(2)在平面直角坐標(biāo)系中,將Rt△A1O1B1繞點O1順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的Rt△A2O1B2
(3)用點A1旋轉(zhuǎn)到點A2所經(jīng)過的路徑與O1A1、O1A2圍成的扇形做成一個圓錐的側(cè)面,求這個圓錐的高.(保留精確值)

查看答案和解析>>

同步練習(xí)冊答案