【題目】如圖所示,個(gè)直角邊長(zhǎng)為3的等腰直角三角形……,斜邊在同一直線上,設(shè)的面積為,的面積為…,的面積為,則_________________;_____________

【答案】

【解析】

連接B1、B2B3、B4B5點(diǎn),顯然它們共線且平行于AC1,依題意可知△B1C1B2是等腰直角三角形,知道△B1B2D1與△C1AD1相似,求出相似比,根據(jù)三角形面積公式可得出S1,同理:B2B3AC2=12,所以B2D2D2C2=12,所以S2=,同樣的道理,即可求出S3,S4…Sn

n+1個(gè)邊長(zhǎng)為1的等腰三角形有一條邊在同一直線上,
SAB1C1=,
連接B1、B2、B3、B4B5點(diǎn),根據(jù)等腰三角形性質(zhì)和平行線判定,它們共線且平行于AC1
∵∠B1C1B2=90°
A1B1B2C1
∴△B1C1B2是等腰直角三角形,且邊長(zhǎng)=1,
∴△B1B2D1∽△C1AD1
B1D1D1C1=11,
S1=
故答案為:;
同理:B2B3AC2=12
B2D2D2C2=12,
S2=
同理:B3B4AC3=13,
B3D3D3C3=13,


Sn=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖中,,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以即為直徑作BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)E,連接DE

1)當(dāng)時(shí),

①若,求的度數(shù);

②求證;

2)當(dāng)時(shí),

①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長(zhǎng);

②以D為端點(diǎn)過(guò)P作射線DH,作點(diǎn)O關(guān)于DE的對(duì)稱(chēng)點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為_(kāi)_______.(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以點(diǎn)P為圓心的圓弧與x軸交于A,B;兩點(diǎn),點(diǎn)P的坐標(biāo)為(4,2)點(diǎn)A的坐標(biāo)為(2,0)則點(diǎn)B的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上

B. 角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等

C. 三角形三條角平分線的交點(diǎn)到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)M(﹣2,﹣1),且P(﹣1,﹣2)為雙曲線上的一點(diǎn),Q為坐標(biāo)平面上一動(dòng)點(diǎn),PA垂直于x軸,QB垂直于y軸,垂足分別是A、B

1)寫(xiě)出正比例函數(shù)和反比例函數(shù)的關(guān)系式;

2)當(dāng)點(diǎn)Q在直線MO上運(yùn)動(dòng)時(shí),直線MO上是否存在這樣的點(diǎn)Q,使得OBQOAP面積相等?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;

3)如圖2,當(dāng)點(diǎn)Q在第一象限中的雙曲線上運(yùn)動(dòng)時(shí),作以OP、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為   ;

當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為   

2)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF△ABC相似嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)某種商品時(shí)的單價(jià)是40元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是60元時(shí),銷(xiāo)售量是300件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件.

1)設(shè)該種商品的銷(xiāo)售單價(jià)為x元(x40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)W元,并把結(jié)果填寫(xiě)在表格中:

2)在(1)的條件下,若商場(chǎng)獲得了4000元銷(xiāo)售利潤(rùn),求該商品銷(xiāo)售單價(jià)x應(yīng)定為多少元?

3)當(dāng)定價(jià)多少時(shí),該商場(chǎng)獲得的最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩位同學(xué)利用燈光下的影子來(lái)測(cè)量一路燈A的高度,如圖,當(dāng)甲走到點(diǎn)C處時(shí),乙測(cè)得甲直立身高CD與其影子長(zhǎng)CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點(diǎn)E處時(shí),甲直立身高EF的影子恰好是線段EG,并測(cè)得EG=2.5m.已知甲直立時(shí)的身高為1.75m,求路燈的高AB的長(zhǎng).(結(jié)果精確到0.1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1,拱橋的跨度為10,橋洞與水面的最大距離是5,橋洞兩側(cè)壁上各有一盞距離水面4米的景觀燈,兩盞景觀燈之間的水平距離為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案