【題目】端午節(jié)期間,甲、乙兩人沿同一路線行駛,各自開車同時去離家千米的景區(qū)游玩,甲先以每小時千米的速度勻速行駛小時,再以每小時千米的速度勻速行駛,途中休息了一段時間后,仍按照每小時千米的速度勻速行駛,兩人同時到達(dá)目的地,圖中折線、線段分別表示甲、乙兩人所走的路程、與時間之間的函數(shù)關(guān)系的圖象請根據(jù)圖象提供的信息,解決下列問題:
(1)乙的速度為:_______;
(2)圖中點的坐標(biāo)是________;
(3)圖中點的坐標(biāo)是________;
(4)題中_________;
(5)甲在途中休息____________.
【答案】(1)80千米/小時;(2)(1,60);(3)(2,160);(4);(5)1.
【解析】
(1)根據(jù)速度=路程時間即可得出乙的速度;
(2)根據(jù)路程=速度時間,可得甲1小時所行駛的路程,即可得出A點坐標(biāo);
(3)根據(jù)D的坐標(biāo)可計算直線OD的解析式,從圖中知E的橫坐標(biāo)為2,可得E的坐標(biāo);
(4)根據(jù)2小時時甲追上乙,可知兩人路程相等,列出方程,解方程即可;
(5)根據(jù)點E到D的時間差及速度可得休息的時間.
(1)乙的速度為:(千米/小時);
故答案為:80千米/小時
(2)∵甲先以每小時千米的速度勻速行駛小時到達(dá)A
∴此時,甲走過的路程為60千米
∴圖中點的坐標(biāo)是(1,60);
故答案為:(1,60)
(3)設(shè)直線OD的解析式為:,
把代入得:,,
∴直線OD的解析式為:,
當(dāng)時,,
,
故答案為:
(4)由圖像可知,兩小時時,甲追上乙,由題意得:,
∴,
故答案為:1
(5)∵,
∴甲在途中休息1.
故答案為:1
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校參加學(xué)生英語口語比賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分),乙校平均分是8.3分,乙校的中位數(shù)是8分.依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的甲校成績統(tǒng)計表和乙校成績統(tǒng)計圖;
甲校成績統(tǒng)計表
分?jǐn)?shù) | 7分 | 8分 | 9分 | 10分 |
人數(shù) | 11 | 0 | ■ | 8 |
(1)請你將乙校成績統(tǒng)計圖直接補充完整;
(2)請直接寫出甲校的平均分是 ,甲校的中位數(shù)是 ,甲校的眾數(shù)是 ,從平均分和中位數(shù)的角度分析 校成績較好(填“甲”或“乙”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下空隙,又不互相重疊(在幾何里叫作平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關(guān).當(dāng)圍繞一點拼在一起的幾個正多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.
(1)請根據(jù)下列圖形,填寫表中空格.
(2)如圖所示,如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形.
(3)不能用正五邊形形狀的材料鋪滿地面的理由是什么?
(4)從正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.下面有三個推斷:①某次實驗投擲次數(shù)是500,計算機(jī)記錄“釘尖向上”的次數(shù)是308,則該次試驗“釘尖向上”的頻率是0.616;②隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;③若再次用計算機(jī)模擬實驗,則當(dāng)投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.其中合理的是( 。
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠BAD=90°,對角線BD⊥DC.
(1)△ABD與△DCB相似嗎?請回答并說明理由;
(2)如果AD=4,BC=9,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展開后,得折痕AD、BE.(如圖①),點O為其交點.如圖②,若P、N分別為BE、BC上的動點.如圖③,若點Q在線段BO上,BQ=1,則QN+NP+PD的最小值=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠B=∠C=90°,AB=3,BC=4,CD=1.以AD為腰作等腰△ADE,使∠ADE=90°,過點E作EF⊥DC交直線CD于點F.請畫出圖形,并直接寫出AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:
如圖①,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.
解決問題:
(1)圖①中,若∠A=∠B=∠DEC=40°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖②,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強相似點(無需寫解答過程);
(3)如圖③所示的矩形ABCD,將矩形ABCD沿CM折疊后,點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究點E的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com