已知:如圖,在直角坐標(biāo)系xoy中,點(diǎn)A(2,0),點(diǎn)B在第一象限且△OAB為正三角形,△OAB的外接圓交y軸的正半軸于點(diǎn)C,過點(diǎn)C的圓的切線交x軸于點(diǎn)D.
【小題1】(1)求B、C兩點(diǎn)的坐標(biāo);
【小題2】(2)求直線CD的函數(shù)解析式;
【小題3】(3)設(shè)E、F分別是線段AB、AD上的兩個(gè)動(dòng)點(diǎn),且EF平分四邊形ABCD的周長.
試探究:當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△AEF的面積最大?最大面積是多少?
【小題1】解:(1)∵A(2,0),
∴OA=2.
作BG⊥OA于G,
∵△OAB為正三角形,∴OG=1,BG=,
∴B(1,). ………………………………1分
連AC,∵∠AOC=90°,∠ACO=∠ABO=60°.
,∴OC=.
∴C(0,). …………………………………2分
【小題2】(2)∵∠AOC=90°,∴AC是圓的直徑,
又∵CD是圓的切線,∴CD⊥AC.
∴∠OCD=30°,OD=.∴D(,0).
設(shè)直線CD的函數(shù)解析式為y=kx+b(k≠0),
則,解得
∴直線CD的解析式為y=.…4分
【小題3】(3)∵AB=OA=2,OD=,CD=2OD=,BC=OC=,
∴四邊形ABCD的周長6+.
設(shè)AE=t,△AEF的面積為S,
則AF=3+-t,S=(3+).
∵S=(3+)=.
∵點(diǎn)E、F分別在線段AB、AD上,
∴ ∴…………………………6分
∴當(dāng)t=時(shí),S最大=.…………8分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
10 |
7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省蘭州四中九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,
與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐
標(biāo)為2,
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)直接寫出時(shí)x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆安徽滁州八年級下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題
已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)A,C的坐
標(biāo)分別為(6,0),(0,2).點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過點(diǎn)D作直線=-+交折線O-A-B于點(diǎn)E.
(1)在點(diǎn)D運(yùn)動(dòng)的過程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)如圖2,當(dāng)點(diǎn)E在線段OA上時(shí),矩形OABC關(guān)于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點(diǎn)D,M,O′A′分別交CB,OA于點(diǎn)N,E.求證:四邊形DMEN是菱形;
(3)問題(2)中的四邊形DMEN中,ME的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣西欽州卷)數(shù)學(xué) 題型:解答題
(本題滿分8分)已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當(dāng)PA的長度等于
時(shí),∠PAB=60°;
當(dāng)PA的長度等于 時(shí),△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角
坐標(biāo)系(點(diǎn)A即為原點(diǎn)O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐
標(biāo)為(a,b),試求2 S1 S3-S22的最大值,并求出此時(shí)a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com