【題目】如圖,在矩形ABCD中,已知 ADAB.在邊AD上取點(diǎn)E,連結(jié)CE.過(guò)點(diǎn)EEFCE,與邊AB的延長(zhǎng)線交于點(diǎn)F

1)證明:AEF∽△DCE.

2)若AB=3,AE =4AD=10,求線段BF的長(zhǎng).

【答案】1)見解析;(2BF5

【解析】

1)根據(jù)矩形的性質(zhì)可得出∠AD90°,由CEEF可得出∠AEF+∠DEC90°,結(jié)合∠F+∠AEF90°可得出∠F=∠DEC,進(jìn)而可證出AEF∽△DCE;

2)根據(jù)矩形的性質(zhì)可得出DC的長(zhǎng)度,由AEAD的長(zhǎng)度可得出DE的長(zhǎng)度,根據(jù)相似三角形的性質(zhì)可得,代入數(shù)據(jù)求出AF,即可得到BF的長(zhǎng)度.

1)證明:∵四邊形ABCD為矩形,

∴∠AD90°,

CEEF,

∴∠AEF+∠DEC90°,

又∵∠F+∠AEF90°,

∴∠F=∠DEC

∴△AEF∽△DCE;

2)解:∵四邊形ABCD為矩形,

DCAB3,

AE4AD10

DEADAE6,

∵△AEFDCE,

,即,

AF8,

BFAFAB5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,ACCB,點(diǎn)E,F分別是AC,BC上的點(diǎn),CEF的外接圓交AB于點(diǎn)Q,D

1)如圖1,若點(diǎn)DAB的中點(diǎn),求證:∠DEF=∠B;

2)在(1)問(wèn)的條件下:

①如圖2,連結(jié)CD,交EFH,AC4,若EHD為等腰三角形,求CF的長(zhǎng)度.

②如圖2,AEDECF的面積之比是34,且ED3,求CEDECF的面積之比(直接寫出答案).

3)如圖3,連接CQ,CD,若AE+BFEF,求證:∠QCD45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)用圖形變化的方法研究下列問(wèn)題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且ABCDEF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度米,橋拱到水面的最大高度米.求:

橋拱的半徑;

現(xiàn)水面上漲后水面跨度為米,求水面上漲的高度為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)為,(正方形網(wǎng)格中,每個(gè)小正方形邊長(zhǎng)為1個(gè)單位長(zhǎng)度).

1)畫出向下平移4個(gè)單位得到的;

2)以B為位似中心,在網(wǎng)格中畫出,使位似,且位似比,直接寫出點(diǎn)坐標(biāo)是_____________________;

3的面積是______________平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的表達(dá)式為線段AB的兩個(gè)端點(diǎn)分別為A(1,2),B(3,2)

(1)若拋物線經(jīng)過(guò)原點(diǎn),求出的值;

(2)求拋物線頂點(diǎn)C的坐標(biāo)(用含有m的代數(shù)式表示);

(3)若拋物線與線段AB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到A'B'CMBC的中點(diǎn),PA'B'的中點(diǎn),連接PM.若BC2,∠BAC30°,則線段PM的最大值是( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】)甲乙兩人在相同條件下完成了5次射擊訓(xùn)練,兩人的成績(jī)?nèi)鐖D所示.

1)甲射擊成績(jī)的眾數(shù)為 環(huán),乙射擊成績(jī)的中位數(shù)為 環(huán);

2)計(jì)算兩人射擊成績(jī)的方差;

3)根據(jù)訓(xùn)練成績(jī),你認(rèn)為選派哪一名隊(duì)員參賽更好,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為2M、N分別為邊BC、CD上的動(dòng)點(diǎn),且∠MAN45°

1)猜想線段BM、DN、MN的數(shù)量關(guān)系并證明;

2)若BMCM,PMN的中點(diǎn),求AP的長(zhǎng);

3M、N運(yùn)動(dòng)過(guò)程中,請(qǐng)直接寫出△AMN面積的最大值   和最小值   

查看答案和解析>>

同步練習(xí)冊(cè)答案