【題目】如圖,正比例函數(shù)y=kx與反比例函數(shù)y= 的圖象不可能是( )
A.
B.
C.
D.

【答案】D
【解析】解:若k>0時(shí),
此時(shí)k﹣1>﹣1,
正比例函數(shù)圖象必定過(guò)一、三象限,
當(dāng)﹣1<k﹣1<0時(shí),
∴反比例函數(shù)y= 必定經(jīng)過(guò)二、四象限,故C的圖象有可能,
當(dāng)k﹣1>0時(shí),
∴反比例函數(shù)y= 必定經(jīng)過(guò)一、三象限,故B的圖象有可能,
若k<0時(shí),
此時(shí)k﹣1<﹣1,
正比例函數(shù)圖象必定過(guò)二、四象限,
∴反比例函數(shù)y= 必定經(jīng)過(guò)二、四象限,故A的圖象有可能,
故選D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正比例函數(shù)的圖象和性質(zhì)和反比例函數(shù)的圖象的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正比函數(shù)圖直線,經(jīng)過(guò)一定過(guò)原點(diǎn).K正一三負(fù)二四,變化趨勢(shì)記心間.K正左低右邊高,同大同小向爬山.K負(fù)左高右邊低,一大另小下山巒;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)現(xiàn)與探索。

(1)根據(jù)小明的解答將下列各式因式分解

a2-12a+20;a-1)2-8(a-1)+7; a2-6ab+5b2

(2)根據(jù)小麗的思考解決下列問(wèn)題:

①說(shuō)明:代數(shù)式a2-12a+20的最小值為-16.

②請(qǐng)仿照小麗的思考解釋代數(shù)式-(a+1)2+8的最大值為8,并求代數(shù)式-a2+12a-8的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點(diǎn)C沿順時(shí)針?lè)较蛐D(zhuǎn)后得到三角形A′B′C,若點(diǎn)B′恰好落在線段AB上,AC、A′B′交于點(diǎn)O,則∠COA′的度數(shù)是(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為一斜坡,其坡角為19.5°,緊挨著斜坡AB底部A處有一高樓,一數(shù)學(xué)活動(dòng)小組量得斜坡長(zhǎng)AB=15m,在坡頂B處測(cè)得樓頂D處的仰角為45°,其中測(cè)量員小剛的身高BC=1.7米,求樓高AD.
(參考數(shù)據(jù):sin19.5°≈ ,tan19.5°≈ ,最終結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知,

⑴若的中點(diǎn),則_____

⑵若的中點(diǎn),則_____

⑶若的中點(diǎn),則____;

⑷以此類推,若C100AC99的中點(diǎn),則AC100=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABBC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D

∠BAD45°,ADBE交于點(diǎn)F,連接CF.

1)求證:BF2AE;

2)若CD,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線L1過(guò)A(0,2),B(2,0)兩點(diǎn),直線L2:y=mx+b過(guò)點(diǎn)C(1,0),且把△AOB分成兩部分,其中靠近原點(diǎn)的那部分是一個(gè)三角形,設(shè)此三角形的面積為S,求S關(guān)于m的函數(shù)解析式,及自變量m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線C1:y=a(x+1)(x﹣3a)(a>0)與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3)
(1)求拋物線C1的解析式及A,B點(diǎn)坐標(biāo);
(2)求拋物線C1的頂點(diǎn)坐標(biāo);
(3)將拋物線C1向上平移3個(gè)單位長(zhǎng)度,再向左平移n(n>0)個(gè)單位長(zhǎng)度,得到拋物線C2 , 若拋物線C2的頂點(diǎn)在△ABC內(nèi),求n的取值范圍. (在所給坐標(biāo)系中畫(huà)出草圖C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面的四個(gè)圖案中,既可用旋轉(zhuǎn)來(lái)分析整個(gè)圖案的形成過(guò)程,又可用軸對(duì)稱來(lái)分析整個(gè)圖案的形成過(guò)程的圖案有( )

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案