如圖已知二次函數(shù)圖象的頂點為原點, 直線的圖象與該二次函數(shù)的圖象交于點(8,8),直線與軸的交點為C,與y軸的交點為B

(1)求這個二次函數(shù)的解析式與B點坐標;
(2)為線段上的一個動點(點不重合),過軸的垂線與這個二次函數(shù)的圖象交于D點,與軸交于點E.設線段PD的長為,點的橫坐標為t,求t之間的函數(shù)關系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段上是否存在點,使得以點P、D、B為頂點的三角形與相似?若存在,請求出點的坐標;若不存在,請說明理由.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖D、E分別是的AB、 AC邊上點,S△ADE∶S四邊形DECB=1∶8那么AE∶AC等于(   )
A.1∶9       B.1∶3      C.1∶8       D.1∶2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是半圓的直徑,點C是弧AB的中點,點E是弧AC的中點,連接EB,CA交于點F,則=( 。
A.B.C.1﹣D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分11分)已知直線軸分別交于點A和點B,點B的坐標為(0,6)

(1)求的值和點A的坐標;
(2)在矩形OACB中,點P是線段BC上的一動點,直線PD⊥AB于點D,與軸交于點E,設BP=,梯形PEAC的面積為。
①求的函數(shù)關系式,并寫出的取值范圍;
②⊙Q是OAB的內(nèi)切圓,求當PE與⊙Q相交的弦長為2.4時點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖△ABC中,為直角,,, DB =     , CD =  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知Rt△ABC中,∠ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點D,連結BD。(12分)

(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點E,連結DE,求證:ED與⊙O相切。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,CD⊥AB于D,E為BC中點,延長AC、DE相交于點F,
求證

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,若DEBC,AD=5,BD=10,DE=4,則BC的值為
A.8B.9 C.10D.12

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀材料,解答問題。(12分)
已知:銳角,如圖,求作:正方形DEFG,使D、E落在BC邊上,F(xiàn)、G分別落在AC、AB邊上。
作法:(1)畫一個有三個頂點落在兩邊上的正方形D1、E1、F1、G1
(如圖所示);
(2)連結BF,并延長交AC于點F;
(3)過點F作EF⊥BC于點E;
(4)過F作FG//BC,交AB于點G;
(5)過點G作GD⊥BC于點D;則四邊形DEFG即為所求作的正方形。
問題:(1)說明上述所求作四邊形DEFG為正方形的理由。
(2)在中,如果BC=120,BC邊上的高為80,求上述正方形DEFG的邊長。
(3)若把(2)中的正方形DEFG改為矩形DEFG,且GF=   DG,其他條件不變,此時,GF是多少?

查看答案和解析>>

同步練習冊答案