如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=k1x+1的圖象與y軸交于點A,與x軸交于點B,與反比例函數(shù)y2=的圖象分別交于點M、N,已知△AOB的面積為1,點M的縱坐標(biāo)為2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)直接寫出y1>y2時x的取值范圍.

【答案】分析:(1)先由一次函數(shù)的解析式為y1=k1x+1,求出點A與點B的坐標(biāo),再根據(jù)△AOB的面積為1,可得到k1的值,從而求出一次函數(shù)的解析式;進(jìn)而得到點M的坐標(biāo),然后運(yùn)用待定系數(shù)法即可求出反比例函數(shù)的解析式;
(2)y1>y2即一次函數(shù)值大于反比例函數(shù)值,只需觀察一次函數(shù)的圖象落在反比例函數(shù)的圖象的上方時自變量的取值范圍即可,為此,先求出它們的交點坐標(biāo),再根據(jù)函數(shù)圖象,可知在點M的左邊以及原點和點N之間的區(qū)間,y1>y2
解答:解:(1)∵一次函數(shù)y1=k1x+1的圖象與y軸交于點A,與x軸交于點B,
∴A(0,1),B(-,0).
∵△AOB的面積為1,
×OB×OA=1,
×(-)×1=1,
∴k1=-,
∴一次函數(shù)的解析式為y1=-x+1;
當(dāng)y=2時,-x+1=2,解得x=-2,
∴M的坐標(biāo)為(-2,2).
∵點M在反比例函數(shù)的圖象上,
∴k2=-2×2=-4,
∴反比例函數(shù)的解析式為y2=-

(2)解方程組,

故當(dāng)y1>y2時,x<-2或0<x<4.
點評:本題考查了反比例函數(shù)和一次函數(shù)的交點問題,以及用待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,是基礎(chǔ)知識要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案