【題目】如圖1,⊙O的直徑AB=12,P是弦BC上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合),∠ABC=30°,過點(diǎn)P作PD⊥OP交⊙O于點(diǎn)D.
(1)如圖2,當(dāng)PD∥AB時(shí),求PD的長;
(2)如圖3,當(dāng)時(shí),延長AB至點(diǎn)E,使BE=AB,連接DE.
①求證:DE是⊙O的切線;
②求PC的長.
【答案】(1) (2)①證明見解析②3﹣3
【解析】
試題分析:(1)根據(jù)題意首先得出半徑長,再利用銳角三角三角函數(shù)關(guān)系得出OP,PD的長;
(2)①首先得出△OBD是等邊三角形,進(jìn)而得出∠ODE=∠OFB=90°,求出答案即可;
②首先求出CF的長,進(jìn)而利用直角三角形的性質(zhì)得出PF的長,進(jìn)而得出答案.
試題解析:(1)如圖2,連接OD,
∵OP⊥PD,PD∥AB,
∴∠POB=90°,
∵⊙O的直徑AB=12,
∴OB=OD=6,
在Rt△POB中,∠ABC=30°,
∴OP=OBtan30°=6×=2,
在Rt△POD中,
PD===;
(2)①如圖3,連接OD,交CB于點(diǎn)F,連接BD,
∵,
∴∠DBC=∠ABC=30°,
∴∠ABD=60°,
∵OB=OD,
∴△OBD是等邊三角形,
∴OD⊥FB,
∵BE=AB,
∴OB=BE,
∴BF∥ED,
∴∠ODE=∠OFB=90°,
∴DE是⊙O的切線;
②由①知,OD⊥BC,
∴CF=FB=OBcos30°=6×=3,
在Rt△POD中,OF=DF,
∴PF=DO=3(直角三角形斜邊上的中線,等于斜邊的一半),
∴CP=CF﹣PF=3﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=4,求平行四邊形ADEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個(gè)說法:①;②;③;④;其中說法正確的是
A. ①②B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OC在∠BOD內(nèi).
(1)如果∠AOC和∠BOD都是直角.
①若∠BOC=60°,則∠AOD的度數(shù)是 ;
②猜想∠BOC與∠AOD的數(shù)量關(guān)系,并說明理由;
(2)如果∠AOC=∠BOD=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段 AB=12cm,點(diǎn) C 為 AB 上的一個(gè)動(dòng)點(diǎn),點(diǎn) D,E 分別是 AC 和 BC的中點(diǎn).
(1)若 AC=4cm,求 DE 的長.
(2)若 AC=acm(不超過 12cm),求 DE 的長.
(3)知識(shí)遷移:如圖②,已知∠AOB=120°,過角的內(nèi)部任意一點(diǎn) C 畫射線OC,若OD,OE 分別平分∠AOC 和∠BOC,求∠DOE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m與x軸交于點(diǎn)A(-3,0),直線y=-x+2與x軸、y軸分別交于B、C兩點(diǎn),并與直線y=x+m相交于點(diǎn)D,
(1)點(diǎn)D的坐標(biāo)為 ;
(2)求四邊形AOCD的面積;
(3)若點(diǎn)P為x軸上一動(dòng)點(diǎn),當(dāng)PD+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對(duì)于一個(gè)數(shù)x,我們把[x]稱作x的相伴數(shù);若x≥0,則[x]=x﹣1;若x<0,則[x]=x+1.例:[0.5]=﹣0.5.
(1)求[]、[﹣1]的值;
(2)當(dāng)a>0,b<0時(shí),有[a]=[b],試求代數(shù)式(b﹣a)3﹣3a+3b的值;
(3)解方程:[x]+[x+2]=1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=2x-2與拋物線交于點(diǎn)A(1,0)和點(diǎn)B,且m<n.
(1)當(dāng)m=時(shí),直接寫出該拋物線頂點(diǎn)的坐標(biāo).
(2)求點(diǎn)B的坐標(biāo)(用含m的代數(shù)式表示).
(3)設(shè)拋物線頂點(diǎn)為C,記△ABC的面積為S.
①,求線段AB長度的取值范圍;
②當(dāng)時(shí),求對(duì)應(yīng)的拋物線的函數(shù)表達(dá)式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知矩形中,點(diǎn)是邊上的一動(dòng)點(diǎn)(不與點(diǎn)、重合),過點(diǎn)作于點(diǎn),于點(diǎn),于點(diǎn),猜想線段三者之間具有怎樣的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖,若點(diǎn)在矩形的邊的延長線上,過點(diǎn)作于點(diǎn),交的延長線于點(diǎn),于點(diǎn),則線段三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的結(jié)論;
(3)如圖,是正方形的對(duì)角線,在上,且,連接,點(diǎn)是上任一點(diǎn),與點(diǎn),于點(diǎn),猜想線段之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com