【題目】某歡樂谷為回饋廣大谷迷,在暑假期間推出學(xué)生個(gè)人門票優(yōu)惠價(jià),各票價(jià)如下:

票價(jià)種類

(A)學(xué)生夜場票

(B)學(xué)生日通票

(C)節(jié)假日通票

單價(jià)(元)

80

120

150

某慈善單位欲購買三種類型的票共100張獎勵品學(xué)兼優(yōu)的留守學(xué)生,其中購買的B種票數(shù)是A種票數(shù)的3倍還多7張,設(shè)購買A種票x張,C種票y張.
(1)直接寫出x與y之間的函數(shù)關(guān)系式;
(2)設(shè)購票總費(fèi)用為W元,求W(元)與x(張)之間的函數(shù)關(guān)系式;
(3)為方便學(xué)生游玩,計(jì)劃購買的學(xué)生夜場票不低于20張,且每種票至少購買5張,則有幾種購票方案?并指出哪種方案費(fèi)用最少.

【答案】
(1)解:x+3x+7+y=100,

所以y=93﹣4x


(2)解:w=80x+120(3x+7)+150(93﹣4x)

=﹣160x+14790


(3)解:依題意得 ,

解得20≤x≤22,

因?yàn)檎麛?shù)x為20、21、22,

所以共有3種購票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);

而w=﹣160x+14790,

因?yàn)閗=﹣160<0,

所以y隨x的增大而減小,

所以當(dāng)x=22時(shí),y最小=22×(﹣160)+14790=11270,

即當(dāng)A種票為22張,B種票73張,C種票為5張時(shí)費(fèi)用最少,最少費(fèi)用為11270元


【解析】(1)根據(jù)總票數(shù)為100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中數(shù)據(jù)把三種票的費(fèi)用加起來得到w=80x+120(3x+7)+150(93﹣4x),然后整理即可;(3)根據(jù)題意得到 ,再解不等式組且確定不等式組的整數(shù)解為20、21、22,于是得到共有3種購票方案,然后根據(jù)一次函數(shù)的性質(zhì)求w的最小值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一元一次不等式組的應(yīng)用(1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:(x+1)(x﹣1)+1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:x2(2x﹣1)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程kx2﹣9x+8=0的一個(gè)根為1,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為半圓內(nèi)一點(diǎn),O為圓心,直徑AB長為2cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)至△B′OC′,點(diǎn)C′OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店老板以每斤x元的單價(jià)購進(jìn)草莓100斤,加價(jià)30%賣出70斤以后,每斤比進(jìn)價(jià)降低a元,將剩下30斤全部賣出,則可獲得利潤為________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的解析式為y=﹣3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1 , l2交于點(diǎn)C.

(1)求直線l2的解析表達(dá)式;
(2)求△ADC的面積;
(3)若點(diǎn)P為第一象限上的一點(diǎn),且以A,C,D,P為頂點(diǎn)的四邊形為平行四邊形,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB=30cm

(1)如圖1,點(diǎn)P沿線段AB自點(diǎn)A向點(diǎn)B2cm/s的速度運(yùn)動,同時(shí)點(diǎn)Q沿線段點(diǎn)B向點(diǎn)A3cm/s的速度運(yùn)動,幾秒鐘后,P、Q兩點(diǎn)相遇?

(2)如圖1,幾秒后,點(diǎn)P、Q兩點(diǎn)相距10cm?

(3)如圖2,AO=4cm,PO=2cm,當(dāng)點(diǎn)PAB的上方,且∠POB=60°時(shí),點(diǎn)P繞著點(diǎn)O30/秒的速度在圓周上逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿直線BAB點(diǎn)向A點(diǎn)運(yùn)動,假若點(diǎn)P、Q兩點(diǎn)能相遇,求點(diǎn)Q的運(yùn)動速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.動點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2個(gè)單位長的速度運(yùn)動,動點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),在線段AD上以每秒1個(gè)單位長的速度向點(diǎn)D運(yùn)動,當(dāng)其中一個(gè)動點(diǎn)到達(dá)端點(diǎn)時(shí)另一個(gè)動點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動的時(shí)間為t(秒).

(1)設(shè)△DPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),四邊形PCDQ是平行四邊形?
(3)分別求出當(dāng)t為何值時(shí),①PD=PQ,②DQ=PQ.

查看答案和解析>>

同步練習(xí)冊答案