【題目】已知拋物線y=ax2+bx+c(a≠0)上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
| ﹣4 | ﹣4 | 0 | … |
(1)求該拋物線的表達(dá)式;
(2)已知點(diǎn)E(4, y)是該拋物線上的點(diǎn),點(diǎn)E關(guān)于拋物線的對(duì)稱軸對(duì)稱的點(diǎn)為點(diǎn)F,求點(diǎn)E和點(diǎn)F的坐標(biāo).
【答案】(1)y=(x+1)2﹣;(2)E點(diǎn)坐標(biāo)為(4,8),點(diǎn)F的坐標(biāo)為(﹣6,8).
【解析】
(1)利用拋物線的對(duì)稱性得到拋物線的頂點(diǎn)坐標(biāo)為(﹣1,﹣ ),則可設(shè)頂點(diǎn)式y=a(x+1)2﹣,然后把(0,﹣4)代入求出a即可;
(2)計(jì)算當(dāng)x=4時(shí)對(duì)應(yīng)的函數(shù)值得到E點(diǎn)坐標(biāo),然后利用對(duì)稱的性質(zhì)確定點(diǎn)F的坐標(biāo).
(1)∵x=﹣2,y=﹣4;x=0,y=﹣4,
∴拋物線的對(duì)稱軸為直線x=﹣1,則拋物線的頂點(diǎn)坐標(biāo)為(﹣1,﹣),
設(shè)拋物線解析式為y=a(x+1)2﹣,
把(0,﹣4)代入得a(0+1)2﹣=﹣4,解得a=,
∴拋物線解析式為y= (x+1)2﹣;
(2)當(dāng)x=4時(shí),y= (4+1)2﹣=8,則E點(diǎn)坐標(biāo)為(4,8),
∵拋物線的對(duì)稱軸為直線x=﹣1
∴點(diǎn)E關(guān)于拋物線的對(duì)稱軸對(duì)稱的點(diǎn)F的坐標(biāo)為(﹣6,8).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
【答案】D
【解析】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,與圖象不符,故A選項(xiàng)錯(cuò)誤;
B.由函數(shù)y=mx+m的圖象可知m<0,對(duì)稱軸為x=<0,則對(duì)稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項(xiàng)錯(cuò)誤;
C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝下,與圖象不符,故C選項(xiàng)錯(cuò)誤;
D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,對(duì)稱軸為x=<0,則對(duì)稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項(xiàng)正確;
故選:D.
【題型】單選題
【結(jié)束】
10
【題目】如圖,已知菱形ABCD的周長(zhǎng)為16,面積為,E為AB的中點(diǎn),若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+AP的最小值為( )
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,連接BD、CE.將△ADE繞點(diǎn)A旋轉(zhuǎn),BD、CE也隨之運(yùn)動(dòng).
(1)求證:BD=CE;
(2)在△ADE繞點(diǎn)A旋轉(zhuǎn)過(guò)程中,當(dāng)AE∥BC時(shí),求∠DAC的度數(shù);
(3)如圖②,當(dāng)點(diǎn)D恰好是△ABC的外心時(shí),連接DC,判斷四邊形ADCE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富學(xué)生的文體生活,某學(xué)校準(zhǔn)備成立“聲樂、演講、舞蹈、足球、籃球”五個(gè)社團(tuán),要求每個(gè)學(xué)生都參加一個(gè)社團(tuán)且每人只能參加一個(gè)社團(tuán).為了了解即將參加每個(gè)社團(tuán)的大致人數(shù),學(xué)校對(duì)部分學(xué)生進(jìn)行了抽樣調(diào)查,在整理調(diào)查數(shù)據(jù)的過(guò)程中,繪制出如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)被抽查的學(xué)生一共有人__________;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若全校有學(xué)生1500人,請(qǐng)你估計(jì)全校有意參加“聲樂”杜團(tuán)的學(xué)生人數(shù);
(4)在“舞蹈社團(tuán)”活動(dòng)中,甲、乙、丙、丁、戊五位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)決定從這五位同學(xué)中任選兩位參加“元旦迎新匯演”,請(qǐng)用列表或畫樹狀圖的方法求出恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B在y軸上,若反比例函數(shù)(k≠0)的圖象過(guò)點(diǎn)C,則該反比例函數(shù)的表達(dá)式為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中四邊形OABC是邊長(zhǎng)為6的正方形,平行于對(duì)角線AC的直線l從O出發(fā),沿x軸正方向以每秒一個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)到直線l與正方形沒有交點(diǎn)為止,設(shè)直線l掃過(guò)正方形OABC的面積為S,直線l的運(yùn)動(dòng)時(shí)間為t(秒),下列能反映S與t之間的函數(shù)圖象的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),A(﹣5,0),與y軸交于C(0,﹣5),并且對(duì)稱軸x=﹣3.
(1)求拋物線的解析式;
(2)P在x軸上方的拋物線上,過(guò)P的直線y=x+m與直線AC交于點(diǎn)M,與y軸交于點(diǎn)N,求PM+MN的最大值;
(3)點(diǎn)D為拋物線對(duì)稱軸上一點(diǎn),
①當(dāng)△ACD是以AC為直角邊的直角三角形時(shí),求D點(diǎn)坐標(biāo);
②若△ACD是銳角三角形,求點(diǎn)D的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是我國(guó)古代城市用以滯洪或分洪系統(tǒng)的局部截面原理圖,圖中為下水管道口直徑,為可繞轉(zhuǎn)軸自由轉(zhuǎn)動(dòng)的閥門,平時(shí)閥門被管道中排出的水沖開,可排出城市污水:當(dāng)河水上漲時(shí),閥門會(huì)因河水壓迫而關(guān)閉,以防止河水倒灌入城中.若閥門的直徑,為檢修時(shí)閥門開啟的位置,且.
(1)直接寫出閥門被下水道的水沖開與被河水關(guān)閉過(guò)程中的取值范圍;
(2)為了觀測(cè)水位,當(dāng)下水道的水沖開閥門到達(dá)位置時(shí),在點(diǎn)處測(cè)得俯角,若此時(shí)點(diǎn)恰好與下水道的水平面齊平,求此時(shí)下水道內(nèi)水的深度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“過(guò)直線上一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過(guò)程.
已知:直線l及直線l上一點(diǎn)P.
求作:直線PQ,使得PQ⊥l.
作法:如圖,
①在直線l上取一點(diǎn)A(不與點(diǎn)P重合),分別以點(diǎn)P,A為圓心,AP長(zhǎng)為半徑畫弧,兩弧在直線l的上方相交于點(diǎn)B;
②作射線AB,以點(diǎn)B為圓心,AP長(zhǎng)為半徑畫弧,交AB的延長(zhǎng)線于點(diǎn)Q;
③作直線PQ.
所以直線PQ就是所求作的直線.
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連接BP,
∵ = = =AP,
∴點(diǎn)A,P,Q在以點(diǎn)B為圓心,AP長(zhǎng)為半徑的圓上.
∴∠APQ=90°( ).(填寫推理的依據(jù))
即PQ⊥l.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com