【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)y= (x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數(shù)圖象上的一點,且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.
【答案】解:∵點B(2,n)、P(3n﹣4,1)在反比例函數(shù)y= (x>0)的圖象上, ∴ .
解得:m=8,n=4.
∴反比例函數(shù)的表達(dá)式為y= .
∵m=8,n=4,
∴點B(2,4),(8,1).
過點P作PD⊥BC,垂足為D,并延長交AB與點P′.
在△BDP和△BDP′中,
∴△BDP≌△BDP′.
∴DP′=DP=6.
∴點P′(﹣4,1).
將點P′(﹣4,1),B(2,4)代入直線的解析式得: ,
解得: .
∴一次函數(shù)的表達(dá)式為y= x+3
【解析】將點B(2,n)、P(3n﹣4,1)代入反比例函數(shù)的解析式可求得m、n的值,從而求得反比例函數(shù)的解析式以及點B和點P的坐標(biāo),過點P作PD⊥BC,垂足為D,并延長交AB與點P′.接下來證明△BDP≌△BDP′,從而得到點P′的坐標(biāo),最后將點P′和點B的坐標(biāo)代入一次函數(shù)的解析式即可求得一次函數(shù)的表達(dá)式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE 是 BC 邊的中線,過點C 作 CF⊥AE,垂足為點 F,過點 B 作 BD⊥BC 交 CF 的延長線于點 D.
(1)試證明:AE=CD;
(2)若 AC=12cm,求線段 BD 的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點E,F(xiàn),過點E,F(xiàn)作直線EF,交AB于點D,連接CD,則△ACD的周長為( )
A.13
B.17
C.18
D.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,P是BC邊上一動點(不含B,C兩點),將△ABP沿直線AP翻折,點B落在點E處,在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.
(1)發(fā)現(xiàn):
△CMP和△BPA是否相似,若相似給出證明,若不相似說明理由;
(2)思考:
線段AM是否存在最小值?若存在求出這個最小值,若不存在,說明理由;
(3)探究:
當(dāng)△ABP≌△ADN時,求BP的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時,直達(dá);動車速度為200千米/小時,行駛180千米后,中途要?啃熘10分鐘,若動車先出發(fā)半小時,兩車與甲地之間的距離y(千米)與動車行駛時間x(小時)之間的函數(shù)圖象為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內(nèi)依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣4sinαx+2=0有兩個等根,則銳角α的度數(shù)是( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圓規(guī)兩腳形成的角α稱為圓規(guī)的張角.一個圓規(guī)兩腳均為12cm,最大張角150°,你能否畫出一個半徑為20cm的圓?請借助圖2說明理由.(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com