【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象如圖所示,根據(jù)圖象信息,下列說(shuō)法:①兩人相遇前,甲速度一直小于乙速度;②出發(fā)后1小時(shí),兩人行程均為10km;③出發(fā)后1.5小時(shí),甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的說(shuō)法是_________(填序號(hào)).
【答案】②③④
【解析】
根據(jù)相遇前的圖像乙的速度有變化,沒(méi)有都大于甲的速度,即可判斷①,根據(jù)出發(fā)后1小時(shí),甲乙相遇,可判斷②,求出甲路程與時(shí)間的函數(shù),及乙在0.5到1.5小時(shí)這段時(shí)間的函數(shù),即可判斷③,由圖像甲先到到達(dá)20km處,知甲先到終點(diǎn),故可判斷④.
根據(jù)相遇前的圖像乙的速度有變化,沒(méi)有都大于甲的速度,∴①錯(cuò)誤;
根據(jù)出發(fā)后1小時(shí),甲乙相遇,∴②正確,
利用甲函數(shù)經(jīng)過(guò)原點(diǎn)與(1,10)求出甲路程與時(shí)間的函數(shù)為y=10x,
乙在0.5到1.5小時(shí)這段時(shí)間的函數(shù)經(jīng)過(guò)(0.5,8),(1,10),求出這段時(shí)間的函數(shù)為y=4x+6,
∴1.5h時(shí),甲的路程為15km,乙的路程為12km, 甲的行程比乙多3km,故③正確,
由圖像甲先到到達(dá)20km處,知甲先到終點(diǎn),故可判斷④正確.
故填②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來(lái)越高,某公司根據(jù)市場(chǎng)需求代理A,B兩種型號(hào)的凈水器,每臺(tái)A型凈水器比每臺(tái)B型凈水器進(jìn)價(jià)多200元,用5萬(wàn)元購(gòu)進(jìn)A型凈水器與用4.5萬(wàn)元購(gòu)進(jìn)B型凈水器的數(shù)量相等
(1)求每臺(tái)A型、B型凈水器的進(jìn)價(jià)各是多少元?
(2)該公司計(jì)劃購(gòu)進(jìn)A,B兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷(xiāo),其中A型凈水器為x臺(tái),購(gòu)買(mǎi)資金不超過(guò)9.8萬(wàn)元,試銷(xiāo)時(shí)A型凈水器每臺(tái)售價(jià)2500元,B型凈水器每臺(tái)售價(jià)2180元,公司決定從銷(xiāo)售A型凈水器的利潤(rùn)中按每臺(tái)捐獻(xiàn)a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的最大利潤(rùn)不低于20200元但不超過(guò)23000元,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線(xiàn)l1,l2,過(guò)點(diǎn)(1,0)作x軸的垂線(xiàn)交l1于點(diǎn)A1,過(guò)點(diǎn)A1作y軸的垂線(xiàn)交l2于點(diǎn)A2,過(guò)點(diǎn)A2作x軸的垂線(xiàn)交l1于點(diǎn)A3,過(guò)點(diǎn)A3作y軸的垂線(xiàn)交l2于點(diǎn)A4,…,依次進(jìn)行下去,則點(diǎn)A2019的坐標(biāo)為( )
A.(21009,21010)B.(﹣21009,21010)
C.(21009,﹣21010)D.(﹣21009,﹣21010)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,∠C=52°,BE為AC邊上的中線(xiàn),AD平分∠BAC,交BC邊于點(diǎn)D,過(guò)點(diǎn)B作BF⊥AD,垂足為F,則∠EBF的度數(shù)為( )
A.19°B.33°C.34°D.43°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更新樹(shù)木品種,某植物園計(jì)劃購(gòu)進(jìn)甲、乙兩個(gè)品種的樹(shù)苗栽植培育若計(jì)劃購(gòu)進(jìn)這兩種樹(shù)苗共41棵,其中甲種樹(shù)苗的單價(jià)為6元/棵,購(gòu)買(mǎi)乙種樹(shù)苗所需費(fèi)用y(元)與購(gòu)買(mǎi)數(shù)量x(棵)之間的函數(shù)關(guān)系如圖所示.
(1)求出y與x的函數(shù)關(guān)系式;
(2)若在購(gòu)買(mǎi)計(jì)劃中,乙種樹(shù)苗的數(shù)量不超過(guò)35棵,但不少于甲種樹(shù)苗的數(shù)量.請(qǐng)?jiān)O(shè)計(jì)購(gòu)買(mǎi)方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.
求出每天的銷(xiāo)售利潤(rùn)元與銷(xiāo)售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
如果該企業(yè)要使每天的銷(xiāo)售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷(xiāo)售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙、丁從筆試、面試兩個(gè)方面進(jìn)行量化考核.甲、乙、丙、丁兩項(xiàng)得分如下表:(單位:分)
甲 | 乙 | 丙 | 丁 | |
筆試 | 86 | 92 | 80 | 90 |
面試 | 90 | 88 | 94 | 84 |
(1)這4名選手筆試成績(jī)的中位數(shù)是 分,面試的平均數(shù)是 分.
(2)該公司規(guī)定:筆試、面試分別按40%,60%的比例計(jì)入總分,且各項(xiàng)成績(jī)都不得低于85分. 根據(jù)規(guī)定,請(qǐng)你說(shuō)明誰(shuí)將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,OA=OB,函數(shù)的圖象與線(xiàn)段AB交于M點(diǎn),且AM=BM.
(1)求點(diǎn)M的坐標(biāo);
(2)求直線(xiàn)AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線(xiàn)段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過(guò)P、O兩點(diǎn)的二次函數(shù)y1和過(guò)P、A兩點(diǎn)的二次函數(shù)y2的圖象開(kāi)口均向下,它們的頂點(diǎn)分別為B、C,射線(xiàn)OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于()
A.B.C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com