【題目】在等腰△ABC中,已知AB=AC,BD⊥AC于D.
(1)若∠A=48°,求∠CBD的度數(shù);
(2)若BC=15,BD=12,求AB的長.
【答案】(1)∠CBD=24°;(2)AB=.
【解析】
(1)根據(jù)等腰三角形的性質和直角三角形的兩個銳角互余,可以求得∠CBD的度數(shù);
(2)根據(jù)題目中的數(shù)據(jù)和勾股定理,可以求得AB的長.
解:(1)∵在等腰△ABC中,AB=AC,BD⊥AC,
∴∠ABC=∠C,∠ADB=90°,
∵∠A=48°,
∴∠ABC=∠C=66°,∠ABD=42°,
∴∠CBD=24°;
(2)∵BD⊥AC,
∴∠BDC=90°,
∵BC=15,BD=12,
∴CD=9,
設AB=x,則AD=x﹣9,
∵∠ADB=90°,BD=12,
∴122+(x﹣9)2=x2,
解得,x=,
即AB=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面中,O為原點,點A的坐標為(20,0),點B在第一象限內,BO=10,sin∠BOA= .
(1)①在圖中,求作△ABO的外接圓;(尺規(guī)作圖,不寫作法但需保留作圖痕跡);②求點B的坐標與cos∠BAO的值;
(2)若A,O位置不變,將點B沿 軸正半軸方向平移使得△ABO為等腰三角形,請直接寫出平移距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知tan∠EOF=2,點C在射線OF上,OC=12.點M是∠EOF內一點,MC⊥OF于點C,MC=4.在射線CF上取一點A,連結AM并延長交射線OE于點B,作BD⊥OF于點D.
(1)當AC的長度為多少時,△AMC和△BOD相似;
(2)當點M恰好是線段AB中點時,試判斷△AOB的形狀,并說明理由;
(3)連結BC.當S△AMC=S△BOC時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12厘米,BC=8厘米,點D為AB的中點,如果點M在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點N在線段CA上由C點向A點運動,若使△BDM與△CMN全等,則點N的運動速度應為_____厘米/秒.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=5,點P是AC上的動點,連接BP,以BP為邊作等邊△BPQ,連接CQ,則點P在運動過程中,線段CQ長度的最小值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知A( ,y1),B(2,y2)為反比例函數(shù)y= 圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是( )
A.( ,0)
B.(1,0)
C.( ,0)
D.( ,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的布袋里裝有4個球,其中2個紅球,2個白球,它們除顏色外其余都相同.
(1)摸出1個球是白球的概率是;
(2)同時摸兩個球恰好是兩個紅球的概率(要求畫樹狀圖或列表).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某工廠計劃在規(guī)定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規(guī)定時間內可以多生產300個零件.
(1)求原計劃每天生產的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數(shù)比20個工人原計劃每天生產的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,
(1)描出A(﹣4,3)、B(﹣1,0)、C(﹣2,3)三點.
(2)△ABC 的面積是多少?
(3)作出△ABC 關于 y 軸的對稱圖形.
(4)請在x 軸上求作一點P,使△PA1C1 的周長最小,并直接寫出點P 的坐標
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com