【題目】如圖所示,在中,,、分別是、的垂直平分線,點、上,則_______

【答案】

【解析】

根據(jù)三角形的內(nèi)角和定理求出∠B+C=74°,根據(jù)線段垂直平分線的性質得出AE=BE,AN=CN,根據(jù)等腰三角形的性質得出∠BAE=B,∠C=CAN,求出∠BAE+CAN=B+C=74°,即可求出答案.

解:∵△ABC中,∠BAC=106°,
∴∠B+C=180°-BAC=180°-106°=74°,
EF、MN分別是AB、AC的中垂線,
AE=BEAN=CN;

∴∠B=BAE,∠C=CAN,
即∠B+C=BAE+CAN=74°,
∴∠EAN=BAC-(∠BAE+CAN=106°-74°=32°.
故答案為32°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】材料閱讀:利用完全平方公式,可以將多項式ax2+bx+c(a≠0)變形為a(x+m)2+n的形式,我們把這樣的變形方法叫做多項ax2+bx+c式的配方法.

例如:x2+11x+24=x2+11x++24=

探究發(fā)現(xiàn):

小明發(fā)現(xiàn):

運用多項式的配方法及平方差公式能對一些多項式進行分解因式.

例如: x2+11x+24=x2+11x++24===(x+8)(x+3)

小紅發(fā)現(xiàn):運用多項式的配方法能確定一些多項式的最大值或最小值.

x2+11x+24=x2+11x++24=

因為不論x取何值,,所以當,時,多項式x2+11x+24有最小值為

根據(jù)以上材料,解答下列問題:

1)分解因式:x23x10

2)試確定:多項式的最值(即最大值或最小值)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【閱讀學習】 劉老師提出這樣一個問題:已知α為銳角,且tanα=,求sin2α的值.

小娟是這樣解決的:

如圖1,在⊙O中,AB是直徑,點C⊙O上,∠BAC=α,所以∠ACB=90°,tanα==

易得∠BOC=2α.設BC=x,則AC=3x,則AB=x.作CD⊥ABD,求出CD= (用含x的式子表示),可求得sin2α==

【問題解決】

已知,如圖2,點M、NP為圓O上的三點,且∠P=β,tanβ =,求sin2β的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象過點

1)在給出的平面直角坐標系中畫出它的圖象;

2)求該一次函數(shù)的解析式;

3)判斷是否在這個一次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點 A﹣2,0),B20),C02,點 D,點E分別是 AC,BC的中點,將CDE繞點C逆時針旋轉得到CDE,及旋轉角為α,連接 AD,BE

1如圖,若 α90°,當 AD′∥CE時,求α的大小;

2如圖,若 90°α180°,當點 D落在線段 BE上時,求 sin∠CBE的值;

3若直線AD與直線BE相交于點P,求點P的橫坐標m的取值范圍直接寫出結果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.

(1)求證:△ACD≌△CBE;

(2)若AD=12,DE=7,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點,四邊形ABCD的對角線AC,BD交于點E,BC= ,CD= ,則sinAEB的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Pa,b)是直線y=x5與雙曲線的一個交點,則以a、b兩數(shù)為根的一元二次方程是( ).

A. x2-5x+6=0 B. x2+5x+6=0 C. x2-5x-6="0" D. x2+5x-6=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條筆直的公路上有甲乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地.設他們同時出發(fā),運動的時間為t(分),與乙地的距離為s(米),圖中線段EF,折線OABD分別表示兩人與乙地距離s和運動時間t之間的函數(shù)關系圖象.

1)李越騎車的速度為______米/分鐘;

2B點的坐標為______;

3)李越從乙地騎往甲地時,st之間的函數(shù)表達式為______;

4)王明和李越二人______先到達乙地,先到______分鐘.

查看答案和解析>>

同步練習冊答案