【題目】如圖,已知點A是雙曲線在第一象限的分支上的一個動點,連接AO并延長交另一分支于點B,過點A作y軸的垂線,過點B作x軸的垂線,兩垂線交于點C,隨著點A的運動,點C的位置也隨之變化.設(shè)點C的坐標為(m,n),則m,n滿足的關(guān)系式為( 。

A.n=﹣2m
B.n=
C.n=﹣4m
D.n=

【答案】B
【解析】解:由反比例函數(shù)的性質(zhì)可知,A點和B點關(guān)于原點對稱,
∵點C的坐標為(m,n),
∴點A的坐標為(,n),
∴點B的坐標為(﹣,﹣n),
根據(jù)圖象可知,B點和C點的橫坐標相同,
∴﹣=m,即n=﹣
故選:B.
首先根據(jù)點C的坐標為(m,n),分別求出點A的坐標、點B的坐標;然后根據(jù)AO、BO所在的直線的斜率相同,求出m,n滿足的關(guān)系式即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】釣魚島是我國固有領(lǐng)土.某校七年級(15)班舉行“愛國教育”為主題班會時,就有關(guān)釣魚島新聞的獲取途徑,對本班50名學(xué)生進行調(diào)查(要求每位同學(xué),只選自己最認可的一項),并繪制如圖所示的扇形統(tǒng)計圖.

(1)該班學(xué)生選擇“報刊”的有 人.在扇形統(tǒng)計圖中,“其它”所在扇形區(qū)域的圓心角是 度.(直接填結(jié)果)
(2)如果該校七年級有1500名學(xué)生,利用樣本估計選擇“網(wǎng)站”的七年級學(xué)生約有 人.(直接填結(jié)果)
(3)如果七年級(15)班班委會就這5種獲取途徑中任選兩種對全校學(xué)生進行調(diào)查,求恰好選用“網(wǎng)站”和“課堂”的概率.(用樹狀圖或列表法分析解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A,C分別在坐標軸上,點B的坐標為(4,2),直線y=﹣x+3交AB,BC于點M,N,反比例函數(shù)y=的圖象經(jīng)過點M,N.

(1)求反比例函數(shù)的解析式;
(2)若點P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在基地參加社會實踐話動中,帶隊老師考問學(xué)生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個寬為3米的出入口,如圖所示,如何設(shè)計才能使園地的而積最大?下面是兩位學(xué)生爭議的情境:

請根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長
(2)請你判斷誰的說法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)a,b滿足a﹣b=1,a2﹣ab+2>0,當(dāng)1≤x≤2時,函數(shù)y=(a≠0)的最大值與最小值之差是1,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,頂點為A(1,﹣1)的拋物線經(jīng)過點B(5,3),且與x軸交于C,D兩點(點C在點D的左側(cè)).

(1)求拋物線的解析式;
(2)求點O到直線AB的距離;
(3)點M在第二象限內(nèi)的拋物線上,點N在x軸上,且∠MND=∠OAB,當(dāng)△DMN與△OAB相似時,請你直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,O是坐標原點,點A的坐標是(﹣1,0),點C的坐標是(0,﹣3)

(1)求拋物線的函數(shù)表達式.
(2)求直線BC的函數(shù)表達式和∠ABC的度數(shù).
(3)P為線段BC上一點,連接AC,AP,若∠ACB=∠PAB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿BD對折,點A落在E處,BECD相交于F,若AD=3BD=6

1)求證:△EDF≌△CBF;

2)求∠EBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,下面的結(jié)論:①∠APO+∠DCO=30°;②△OPC是等邊三角形;③AC=AO+AP;④SABC=S四邊形AOCP , 其中正確的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案