【題目】如圖1,將7張長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿足(
A.a=b
B.a=3b
C.a=2b
D.a=4b

【答案】B
【解析】解:左上角陰影部分的長為AE,寬為AF=3b,右下角陰影部分的長為PC,寬為a, ∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,
∴AE+a=4b+PC,即AE﹣PC=4b﹣a,
∴陰影部分面積之差S=AEAF﹣PCCG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,
則3b﹣a=0,即a=3b.
故選:B.
表示出左上角與右下角部分的面積,求出之差,根據(jù)差與BC無關(guān)即可求出a與b的關(guān)系式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)直角∠AOB,∠COD有相同的頂點(diǎn)O,下列結(jié)論:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,則OB平分∠COD;④∠AOD的平分線與∠COB的平分線是同一條射線.其中正確的個(gè)數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),ADEBα,DEAC于點(diǎn)E,且cosα.下列結(jié)論:①△ADE∽△ACD;當(dāng)BD6時(shí),ABDDCE全等;③△DCE為直角三角形時(shí),BD8;0CE≤6.4.其中正確的結(jié)論是______________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+3分別交x軸、y軸于點(diǎn)A、B,P是拋物線y=﹣x2+2x+5上的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為a,過點(diǎn)P且平行于y軸的直線交直線y=﹣x+3于點(diǎn)Q,則當(dāng)PQ=BQ時(shí),a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線段DE的端點(diǎn)坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).

(1)試說明如何平移線段AC,使其與線段ED重合;

(2)將ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn),使AC的對應(yīng)邊為DE,請直接寫出點(diǎn)B的對應(yīng)點(diǎn)F的坐標(biāo);

(3)畫出(2)中的DEF,并和ABC同時(shí)繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)ECD上,點(diǎn)FBA上,GAD延長線上一點(diǎn).

(1 )若∠A=∠1,則可判斷______________,因?yàn)?/span>________

(2 )若∠1=∠_________,則可判斷AGBC,因?yàn)?/span>_________

(3 )∠2+∠______=180°,則可判斷CDAB,因?yàn)?/span>______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為AD上一點(diǎn),∠AOC與∠AOB互補(bǔ),OM,ON分別為∠AOC,∠AOB的平分線,若∠MON=40°,試求∠AOC與∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).

(1)求出b、c的值,并寫出此二次函數(shù)的解析式;

(2)根據(jù)圖象,直接寫出函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍;

(3)當(dāng)2x4時(shí),求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王購買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

(1)用含x的式子表示廚房的面積m2 , 臥室的面積m2
(2)此經(jīng)濟(jì)適用房的總面積為m2
(3)已知廚房面積比衛(wèi)生間面積多2m2 , 且鋪1m2地磚的平均費(fèi)用為80元,那么鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊答案