【題目】閱讀材料,回答以下問題:
我們知道,二元一次方程有無數(shù)個(gè)解,在平面直角坐標(biāo)系中,我們標(biāo)出以這個(gè)方程的解為坐標(biāo)的點(diǎn),就會(huì)發(fā)現(xiàn)這些點(diǎn)在同一條直線上.
例如是方程的一個(gè)解,對(duì)應(yīng)點(diǎn),如下圖所示,我們在平面直角坐標(biāo)系中將其標(biāo)出,另外方程的解還有對(duì)應(yīng)點(diǎn)將這些點(diǎn)連起來正是一條直線,反過來,在這條直線上任取一點(diǎn),這個(gè)點(diǎn)的坐標(biāo)也是方程的解.所以,我們就把條直線就叫做方程的圖象.
一般的,任意二元一次方程解的對(duì)應(yīng)點(diǎn)連成的直線就叫這個(gè)方程的圖象.請(qǐng)問:
(1)已知、、,則點(diǎn)__________(填“A或或”)在方程的圖象上.
(2)求方程和方程圖象的交點(diǎn)坐標(biāo).
(3)已知以關(guān)于的方程組的解為坐標(biāo)的點(diǎn)在方程的圖象上,當(dāng)時(shí),化簡.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)兩種產(chǎn)品共10件,其生產(chǎn)成本和銷售價(jià)如下表所示:
產(chǎn)品 | 種產(chǎn)品 | 種產(chǎn)品 |
成本(萬元/件) | 3 | 5 |
售價(jià)(萬元/件) | 4 | 7 |
(1)若工廠計(jì)劃獲利14萬元,則應(yīng)分別生產(chǎn)兩種產(chǎn)品多少件?
(2)若工廠投入資金不多于44萬元,且獲利不少于14萬元,則工廠有哪些生產(chǎn)方案?
(3)在第(2)的條件下,哪種方案獲利最大;最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線p: 的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過點(diǎn)C′,對(duì)稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把n個(gè)邊長為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,計(jì)算tan∠BA4C=_____,…按此規(guī)律,寫出tan∠BAnC=_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是8×8的標(biāo)準(zhǔn)點(diǎn)陣圖,直線l、m互相垂直,已知△ABC.
(1)寫出△ABC的形狀;
(2)分別畫出△ABC關(guān)于直線l、m對(duì)稱的△A1B1C1,△A2B2C2,再畫出△A1B1C1關(guān)于直線m對(duì)稱的△A3B3C3
(3)△A2B2C2與△A3B3C3關(guān)于哪條直線對(duì)稱? (填“直線l、m”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…
利用你的發(fā)現(xiàn)的規(guī)律解決下列問題
(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)= (直接填空);
(2)(a﹣b)(an﹣1+an﹣2b+an﹣3b2…+abn﹣2+bn﹣1)= (直接填空);
(3)利用(2)中得出的結(jié)論求62019+62018+…+62+6+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在AB上,且CD=CB,點(diǎn)E為BD的中點(diǎn),點(diǎn)F為AC的中點(diǎn),連結(jié)EF交CD于點(diǎn)M.
(1)求證:EF=AC.
(2)連接AM,若∠BAC=45°,AM+DM=15,BE=9,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線l1交BC于點(diǎn)D,AC邊的垂直平分線l2交BC于點(diǎn)E,l1與l2相交于點(diǎn)O,連結(jié)0B,OC.若△ADE的周長為12cm,△OBC的周長為32cm.
(1)求線段BC的長;
(2)連結(jié)OA,求線段OA的長;
(3)若∠BAC=n°(n>90),直接寫出∠DAE的度數(shù) °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(6,0),B(8,5),將線段OA平移至CB,點(diǎn)D(x,0)在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.
(1)求對(duì)角線AC的長;
(2)△ODC與△ABD的面積分別記為S1,S2,設(shè)S=S1﹣S2,求S關(guān)于x的函數(shù)解析式,并探究是否存在點(diǎn)D使S與△DBC的面積相等,如果存在,請(qǐng)求出x的值(或取值范圍);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com