已知關(guān)于x的方程x2-(k+2)x+2k=0.
(1)求證:無論k取任意實(shí)數(shù)值,方程總有實(shí)數(shù)根.
(2)若等腰三角形ABC的一邊a=1,另兩邊長(zhǎng)b、c恰是這個(gè)方程的兩個(gè)根,求△ABC的周長(zhǎng).
【答案】分析:(1)把一元二次方程根的判別式轉(zhuǎn)化成完全平方式的形式,得出△≥0可知方程總有實(shí)數(shù)根.
(2)根據(jù)等腰三角形的性質(zhì)分情況討論求出b,c的長(zhǎng),并根據(jù)三角形三邊關(guān)系檢驗(yàn),綜合后求出△ABC的周長(zhǎng).
解答:證明:(1)∵△=b2-4ac=(k+2)2-8k=(k-2)2≥0,
∴無論k取任意實(shí)數(shù)值,方程總有實(shí)數(shù)根.

解:(2)分兩種情況:
①若b=c,
∵方程x2-(k+2)x+2k=0有兩個(gè)相等的實(shí)數(shù)根,
∴△=b2-4ac=(k-2)2=0,
解得k=2,
∴此時(shí)方程為x2-4x+4=0,解得x1=x2=2,
∴△ABC的周長(zhǎng)為5;
②若b≠c,則b=a=1或c=a=1,即方程有一根為1,
∵把x=1代入方程x2-(k+2)x+2k=0,得1-(k+2)+2k=0,
解得k=1,
∴此時(shí)方程為x2-3x+2=0,
解得x1=1,x2=2,
∴方程另一根為2,
∵1、1、2不能構(gòu)成三角形,
∴所求△ABC的周長(zhǎng)為5.
綜上所述,所求△ABC的周長(zhǎng)為5.
點(diǎn)評(píng):考查根的判別式,等腰三角形的性質(zhì)及三角形三邊關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、已知關(guān)于x的方程x2+kx+1=0和x2-x-k=0有一個(gè)根相同,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綿陽(yáng))已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•西城區(qū)二模)已知關(guān)于x的方程x2+3x=8-m有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根.
(2)若等腰△ABC的一邊長(zhǎng)為a=6,另兩邊長(zhǎng)b,c恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案