【題目】若關(guān)于x、y的二元一次方程組的解都為正數(shù).

(1)求的取值范圍;

(2)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求的值.

【答案】(1);(2)的值為2

【解析】分析:(1)先解方程組用含a的代數(shù)式表示x,y的值,再代入有關(guān)x,y的不等關(guān)系得到關(guān)于a的不等式求解即可;

(2)首先用含m的式子表示xy,由于x、y的值是一個等腰三角形兩邊的長,所以x、y可能是腰也可能是底,依次分析即可解決,注意應(yīng)根據(jù)三角形三邊關(guān)系驗證是否能組成三角形.

詳解:

解方程組得:

∵方程組的解都為正數(shù)

解得:

(2))∵二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,這個等腰三角形的周長為9,
2(a-1)+a+2=9,
解得:a=3,
x=2,y=5,不能組成三角形,
2(a+2)+a-1=9,
解得:a=2,
x=1,y=4,能組成等腰三角形,
a的值是2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC.試猜想線段BE和EC的數(shù)量及位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準備用她們所學(xué)的知識測算南塔的高度.如圖,小芳站在A處測得她看塔頂?shù)难鼋铅翞?5°,小麗站在B處(A、B與塔的軸心共線)測得她看塔頂?shù)难鼋铅聻?0°.她們又測出A、B兩點的距離為30米.假設(shè)她們的
眼睛離頭頂都為10cm,則可計算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù): ≈1.414, ≈1.732)( )

A.36.21米
B.37.71米
C.40.98米
D.42.48米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°,B=E=30°.

(1)操作發(fā)現(xiàn)

如圖2,固定ABC,使DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:

①線段DEAC位置關(guān)系是_________;

②設(shè)BDC的面積為S1AEC的面積為S2,則S1S2的數(shù)量關(guān)系是____________.

(2)猜想論證

DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBCCE邊上的高,請你證明小明的猜想.

(3)拓展探究

已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//ABBC于點E(如圖4).若在射線BA上存在點F,使,請直接寫出相應(yīng)的BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付給兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付給兩組費用共3480元,問:

(1)甲、乙兩組單獨工作一天,商店應(yīng)各付多少元?

(2)已知甲組單獨完成需要12天,乙組單獨完成需要24天,單獨請哪組,商店應(yīng)付費用較少?

(3)若裝修完后,商店每天可盈利200元,你認為如何安排施工有利用商店經(jīng)營?說說你的理由.(可以直接用(1)(2)中的已知條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個長方體的長、寬、高分別是2x3x2、x,則它的表面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B為定點,定直線l//ABPl上一動點.點M,N分別為PAPB的中點,對于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MNAB之間的距離;

⑤∠APB的大小.

其中會隨點P的移動而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,把點A(3,5)向下平移3個單位長度,再向左平移2個單位長度后,得對應(yīng)點A1的坐標是(

A.(1,2)B.(2,1)C.(1,2)D.(1,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點,連接AE并延長交DC的延長線于點F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

同步練習(xí)冊答案