【題目】為落實美麗撫順的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

【答案】(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.

【解析】

1)設(shè)乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)工作時間=工作總量÷工作效率結(jié)合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;

(2)設(shè)安排甲隊工作m天,則安排乙隊工作天,根據(jù)總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結(jié)合總費用不超過145萬元,即可得出關(guān)于m的一元一次不等式,解之取其中的最大值即可得出結(jié)論.

1)設(shè)乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,

根據(jù)題意得:,

解得:x=40,

經(jīng)檢驗,x=40是原分式方程的解,且符合題意,

x=×40=60,

答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;

(2)設(shè)安排甲隊工作m天,則安排乙隊工作天,

根據(jù)題意得:7m+5×≤145,

解得:m≥10,

答:至少安排甲隊工作10天.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE.

若∠BAE=40°,求∠C的度數(shù);

若△ABC周長13cm,AC=6cm,求DC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB 中,AOB90°,OA3OB4,將AOB 沿 x 軸依次以三角形三個頂點為旋轉(zhuǎn)中心順時針旋轉(zhuǎn),分別得圖,圖,則旋轉(zhuǎn)到圖時直角頂點的坐標(biāo)是(

A.28,4B.36,0C.39,0D.,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在半徑為27m的廣場中央,點O的上空安裝了一個照明光源S,S射向地面的光束呈圓錐形,其軸截面SAB的頂角為120°(如圖),求光源離地面的垂直高度SO.(精確到0.1m;=1.44,=1.732=2.236,以上數(shù)據(jù)供參考)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為a,b的兩個正方形并排放在一起,請計算圖中陰影部分面積,并求出當(dāng)a+b=16,ab=60時陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請認真觀察圖形,解答下列問題:

1)根據(jù)圖中條件,用兩種方法表示兩個陰影圖形的面積的和(只需表示,不必化簡);

2)由(1),你能得到怎樣的等量關(guān)系?請用等式表示;

3)如果圖中的a,bab)滿足a2+b2=53ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是某汽車行駛的路程與時間(分鐘)的函數(shù)關(guān)系圖.

觀察圖中所提供的信息,解答下列問題:

1)汽車在前分鐘內(nèi)的平均速度是 .

2)汽車在中途停了多長時間?

3)當(dāng)時,求的函數(shù)關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校6名教師和234名學(xué)生外出參加集體活動,學(xué)校準(zhǔn)備租用45座大車和30座小車若干輛.已知租用1輛大車、2輛小車的租車費用是1000元,租用2輛大車、1輛小車的租車費用是100元.

1)每輛大車、小車的租車費用各是多少元?

2)學(xué)校要求每輛車上至少要有一名教師,且租車總費用不超過2300元,請問有幾種符合條件的租車方案?哪種租車方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DE分別是AB、AC的中點,過點EEF∥AB,交BC于點F

1)求證:四邊形DBFE是平行四邊形;

2)當(dāng)△ABC滿足什么條件時,四邊形DBEF是菱形?為什么?

查看答案和解析>>

同步練習(xí)冊答案