【題目】如圖,在Rt△ABC中,,過(guò)點(diǎn)C的直線(xiàn)MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線(xiàn)MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明理由;
(3)若D為AB中點(diǎn),則當(dāng)=______時(shí),四邊形BECD是正方形.
【答案】(1)詳見(jiàn)解析;(2)菱形;(3)當(dāng)∠A=45°,四邊形BECD是正方形.
【解析】
(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;
(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;
(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.
(1)∵DE⊥BC,
∴∠DFP=90°,
∵∠ACB=90°,
∴∠DFB=∠ACB,
∴DE//AC,
∵M(jìn)N//AB,
∴四邊形ADEC為平行四邊形,
∴CE=AD;
(2)菱形,理由如下:
在直角三角形ABC中,
∵D為AB中點(diǎn),
∴BD=AD,
∵CE=AD,
∴BD=CE,
∴MN//AB,
∴BECD是平行四邊形,
∵∠ACB=90°,D是AB中點(diǎn),
∴BD=CD,(斜邊中線(xiàn)等于斜邊一半)
∴四邊形BECD是菱形;
(3)若D為AB中點(diǎn),則當(dāng)∠A=45°時(shí),四邊形BECD是正方形,
理由:∵∠A=45°,∠ACB=90°,
∴∠ABC=45°,
∵四邊形BECD是菱形,
∴DC=DB,
∴∠DBC=∠DCB=45°,
∴∠CDB=90°,
∵四邊形BECD是菱形,
∴四邊形BECD是正方形,
故答案為:45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a,b滿(mǎn)足(a﹣3)2+|b﹣6|=0.現(xiàn)將線(xiàn)段AB向下平移3個(gè)單位,再向左平移2個(gè)單位,得到線(xiàn)段CD,點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)C,D.連接AC,BD.
(1)如圖①,求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積;
(2)在y軸上是否存在一點(diǎn)M,使三角形MCD的面積與四邊形ABDC的面積相等?若存在,求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;
(3)如圖②,點(diǎn)P是直線(xiàn)BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在直線(xiàn)BD上移動(dòng)時(shí)(不與B,D重合),直接寫(xiě)出∠BAP,∠DOP,∠APO之間滿(mǎn)足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八年級(jí)(1)班開(kāi)展了為期一周的“孝敬父母,幫做家務(wù)”社會(huì)活動(dòng),并根據(jù)學(xué)生幫家長(zhǎng)做家務(wù)的時(shí)間來(lái)評(píng)價(jià)學(xué)生在活動(dòng)中的表現(xiàn),把結(jié)果劃分成A,B,C,D,E五個(gè)等級(jí).老師通過(guò)家長(zhǎng)調(diào)查了全班50名學(xué)生在這次活動(dòng)中幫父母做家務(wù)的時(shí)間,制作成如下的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
(1)求a,b的值;
(2)根據(jù)頻數(shù)分布表估計(jì)該班學(xué)生在這次社會(huì)活動(dòng)中幫父母做家務(wù)的平均時(shí)間;
(3)該班的小明同學(xué)這一周幫父母做家務(wù)2小時(shí),他認(rèn)為自己幫父母做家務(wù)的時(shí)間比班級(jí)里一半以上的同學(xué)多,你認(rèn)為小明的判斷符合實(shí)際嗎?請(qǐng)用適當(dāng)?shù)慕y(tǒng)計(jì)量說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有理數(shù)a、b,其中數(shù)a在數(shù)軸上對(duì)應(yīng)的點(diǎn)為M,b是負(fù)數(shù),且b在數(shù)軸上對(duì)應(yīng)的點(diǎn)與點(diǎn)M的距離為5.5個(gè)單位長(zhǎng)度.
(1)______,______.
(2)將有理數(shù),0,,b,,分別在如圖所示的數(shù)軸上表示出來(lái),并用“”將它們連接起來(lái).
(3)請(qǐng)將(2)中的各數(shù)填到相應(yīng)的集合圈內(nèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4,O為對(duì)角線(xiàn)AC的中點(diǎn),點(diǎn)P,Q分別從A和B兩點(diǎn)同時(shí)出發(fā),在邊AB和BC上勻速運(yùn)動(dòng),并且同時(shí)到達(dá)終點(diǎn)B,C,連接PO,QO并延長(zhǎng)分別與CD,DA交于點(diǎn)M,N,在整個(gè)運(yùn)動(dòng)過(guò)程中,圖中陰影部分面積的大小變化情況是( 。
A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,假命題有( )
①兩點(diǎn)之間線(xiàn)段最短;
②到角的兩邊距離相等的點(diǎn)在角的平分線(xiàn)上;
③過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)平行;
④垂直于同一直線(xiàn)的兩條直線(xiàn)平行;
⑤若 的弦AB,CD交于點(diǎn)P,則
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中AB=3,AD=5,點(diǎn)E在DC上,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,那么的值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)(2017·黃岡)已知:如圖,一次函數(shù)y=-2x+1與反比例函數(shù)y=的圖象有兩個(gè)交點(diǎn)A(-1,m)和B,過(guò)點(diǎn)A作AE⊥x軸,垂足為E;過(guò)點(diǎn)B作BD⊥y軸,垂足為點(diǎn)D,且點(diǎn)D的坐標(biāo)為(0,-2),連結(jié)DE.
(1)求k的值;
(2)求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com