【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,連接AC,∠MAC=∠CAB,作CD⊥AM,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若∠ACD=30°,AD=4,求圖中陰影部分的面積.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)先證明OC∥AM,由CD⊥AM,推出OC⊥CD即可解決問題.
(2)根據(jù)S陰=S△ACD﹣(S扇形OAC﹣S△AOC)計算即可.
試題解析:(1)連接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠MAC=∠OAC,∴∠MAC=∠OCA,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∴CD是⊙O的切線.
(2)在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,∴AC=2AD=8,CD=AD=,∵∠MAC=∠OAC=60°,OA=OC,∴△AOC是等邊三角形,∴S陰=S△ACD﹣(S扇形OAC﹣S△AOC)
==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2向右平移1個單位長度,再向上平移2個單位長度所得的拋物線解析式為( )
A.y=(x﹣1)2+2
B.y=(x+1)2+2
C.y=(x﹣1)2﹣2
D.y=(x+1)2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E
(1)求證:DE=AB;
(2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列選項中,是反比例函數(shù)關(guān)系的為( 。
A.在直角三角形中,30°角所對的直角邊y與斜邊x之間的關(guān)系
B.在等腰三角形中,頂角y與底角x之間的關(guān)系
C.圓的面積S與它的直徑d之間的關(guān)系
D.面積為20的菱形,其中一條對角線y與另一條對角線x之間的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系XOY中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點,不寫畫法);
(2)直接寫出A′,B′,C′三點的坐標(biāo):A′( ),B′( ),C′( )
(3)計算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC在平面直角坐標(biāo)系中,點A、B、C都在第一象限內(nèi),現(xiàn)將△ABC的三個頂點的橫坐標(biāo)保持不變,縱坐標(biāo)都乘-1,得到一個新的三角形,則( )。
A. 新三角形與△ABC關(guān)于x軸對稱 B. 新三角形與△ABC關(guān)于y軸對稱
C. 新三角形的三個頂點都在第三象限內(nèi) D. 新三角形是由△ABC沿y軸向下平移一個單位長度得到的
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com