【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過(guò)點(diǎn)A(﹣1,0).
(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)P(m,t)為拋物線上的一個(gè)動(dòng)點(diǎn),P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P'.
①當(dāng)點(diǎn)P'落在該拋物線上時(shí),求m的值;
②當(dāng)點(diǎn)P'落在第二象限內(nèi),P'A2取得最小值時(shí),求m的值.

【答案】
(1)

解:∵拋物線y=x2+bx﹣3經(jīng)過(guò)點(diǎn)A(﹣1,0),

∴0=1﹣b﹣3,解得b=﹣2,

∴拋物線解析式為y=x2﹣2x﹣3,

∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴拋物線頂點(diǎn)坐標(biāo)為(1,﹣4);


(2)

解:①由P(m,t)在拋物線上可得t=m2﹣2m﹣3,

∵點(diǎn)P′與P關(guān)于原點(diǎn)對(duì)稱,

∴P′(﹣m,﹣t),

∵點(diǎn)P′落在拋物線上,

∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,

∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m= 或m=﹣ ;

②由題意可知P′(﹣m,﹣t)在第二象限,

∴﹣m<0,﹣t>0,即m>0,t<0,

∵拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4),

∴﹣4≤t<0,

∵P在拋物線上,

∴t=m2﹣2m﹣3,

∴m2﹣2m=t+3,

∵A(﹣1,0),P′(﹣m,﹣t),

∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+ 2+

∴當(dāng)t=﹣ 時(shí),P′A2有最小值,

∴﹣ =m2﹣2m﹣3,解得m= 或m=

∵m>0,

∴m= 不合題意,舍去,

∴m的值為


【解析】(1)把A點(diǎn)坐標(biāo)代入拋物線解析式可求得b的值,則可求得拋物線解析式,進(jìn)一步可求得其頂點(diǎn)坐標(biāo);(2)①由對(duì)稱可表示出P′點(diǎn)的坐標(biāo),再由P和P′都在拋物線上,可得到關(guān)于m的方程,可求得m的值;②由點(diǎn)P′在第二象限,可求得t的取值范圍,利用兩點(diǎn)間距離公式可用t表示出P′A2 , 再由點(diǎn)P′在拋物線上,可用消去m,整理可得到關(guān)于t的二次函數(shù),利用二次函數(shù)的性質(zhì)可求得其取得最小值時(shí)t的值,則可求得m的值.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列正方形網(wǎng)格的每個(gè)小正方形的邊長(zhǎng)均為1,⊙O的半徑為n≥8 .規(guī)定:頂點(diǎn)既在圓上又是正方形格點(diǎn)的直角三角形稱為“圓格三角形”,請(qǐng)按下列要求各畫一個(gè)“圓格三角形”,并用陰影表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=x-1與反比例函數(shù)y= 的圖像交于點(diǎn)A(2,1),B(-1,-2),則使y1>y2的x的取值范圍是( ).


A.x>2
B.x>2或-1<x<0
C.-1<x<2
D.x>2或x<-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“蘭州中山橋“位于蘭州濱河路中段白塔山下、金城關(guān)前,是黃河上第一座真正意義上的橋梁,有“天下黃河第一橋“之美譽(yù).它像一部史詩(shī),記載著蘭州古往今來(lái)歷史的變遷.橋上飛架了5座等高的弧形鋼架拱橋. 小蕓和小剛分別在橋面上的A,B兩處,準(zhǔn)備測(cè)量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測(cè)得∠CAB=36°,小剛在B處測(cè)得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結(jié)果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(1)本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為 , 圖①中m的值為;
(2)求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)銳角△ABC的頂點(diǎn)A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延長(zhǎng)線于點(diǎn)F.在AF上取點(diǎn)M,使得AM= AF,連接CM并延長(zhǎng)交直線DE于點(diǎn)H.若AC=2,△AMH的面積是 ,則 的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,點(diǎn)M從點(diǎn)C出發(fā)沿CB方向以1cm/s的速度勻速運(yùn)動(dòng),到達(dá)點(diǎn)B停止運(yùn)動(dòng),在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)M作直線MN交AC于點(diǎn)N,且保持∠NMC=45°,再過(guò)點(diǎn)N作AC的垂線交AB于點(diǎn)F,連接MF,將△MNF關(guān)于直線NF對(duì)稱后得到△ENF,已知AC=8cm,BC=4cm,設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為t(s),△ENF與△ANF重疊部分的面積為y(cm2).

(1)在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,能否使得四邊形MNEF為正方形?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由;
(2)求y關(guān)于t的函數(shù)解析式及相應(yīng)t的取值范圍;
(3)當(dāng)y取最大值時(shí),求sin∠NEF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在黃岡長(zhǎng)江大橋的東端一處空地上,有一塊矩形的標(biāo)語(yǔ)牌ABCD(如圖所示),已知標(biāo)語(yǔ)牌的高AB=5m,在地面的點(diǎn)E處,測(cè)得標(biāo)語(yǔ)牌點(diǎn)A的仰角為30°,在地面的點(diǎn)F處,測(cè)得標(biāo)語(yǔ)牌點(diǎn)A的仰角為75°,且點(diǎn)E,F(xiàn),B,C在同一直線上,求點(diǎn)E與點(diǎn)F之間的距離.(計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A、B、C是直徑為6cm的⊙O上的點(diǎn),且AB=3cm,AC=3 cm,則∠BAC的度數(shù)為(
A.15°
B.75°或15°
C.105°或15°
D.75°或105°

查看答案和解析>>

同步練習(xí)冊(cè)答案