【題目】閱讀第①小題的計(jì)算方法,再計(jì)算第②小題.
①–5+(–9)+17+(–3)
解:原式=[(–5)+(–)]+[(–9)+(–)]+(17+)+[(–3+(–)]
=[(–5)+(–9)+(–3)+17]+[(–)+(–)+(–)+]
=0+(–1)
=–1.
上述這種方法叫做拆項(xiàng)法.靈活運(yùn)用加法的交換律、結(jié)合律可使運(yùn)算簡(jiǎn)便.
②仿照上面的方法計(jì)算:(﹣2000)+(﹣1999)+4000+(﹣1)
【答案】.
【解析】
根據(jù)題目中的拆項(xiàng)法,將每一項(xiàng)數(shù)進(jìn)行拆項(xiàng),使整數(shù)和整數(shù)相加,分?jǐn)?shù)和分?jǐn)?shù)相加,最后運(yùn)算即可得出結(jié)果.
(﹣2000)+(﹣1999)+4000(﹣1)
=(﹣2000)+(﹣1999)+(4000)+(﹣1)
=(﹣2000﹣1999+4000﹣1)+()
=0﹣1
=﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線(xiàn))勻速運(yùn)動(dòng),終點(diǎn)為C,過(guò)P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)6+(﹣)﹣2﹣(﹣1.5)
(2)10+[﹣(﹣1+1)]×6
(3)﹣2÷×()2
(4)﹣32﹣|﹣6|﹣3×(﹣)+(﹣2)2÷
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=mx2-2mx-3 (m≠0)與y軸交于點(diǎn)A,其對(duì)稱(chēng)軸與x軸交于點(diǎn)B頂點(diǎn)為C點(diǎn).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)若∠ACB=45°,求此拋物線(xiàn)的表達(dá)式;
(3)在(2)的條件下,垂直于軸的直線(xiàn)與拋物線(xiàn)交于點(diǎn)P(x1,y1)和Q(x2,y2),與直線(xiàn)AB交于點(diǎn)N(x3,y3),若x3<x1<x2,結(jié)合函數(shù)的圖象,直接寫(xiě)出x1+x2+x3的取值范圍為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,b),B(c,0)是x軸正半軸上一點(diǎn),∠ABO=30°,若與|2﹣a|互為相反數(shù).
(1)求c的值;
(2)如圖2,AC⊥AB交x軸于C,以AC為邊的正方形ACDE的對(duì)角線(xiàn)AD交x軸于F.
①求證:BE=2OC;
②記BF2﹣OF2=m,OC2=n,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,AM是△ACD的外角∠DAF的平分線(xiàn).
(1)求證:AM是⊙O的切線(xiàn);
(2)若∠D = 60°,AD = 2,射線(xiàn)CO與AM交于N點(diǎn),請(qǐng)寫(xiě)出求ON長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖,平面直角坐標(biāo)系中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,拋物線(xiàn)經(jīng)過(guò)、、三點(diǎn),連接,線(xiàn)段交軸于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求拋物線(xiàn)的函數(shù)解析式;
(3)點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),直線(xiàn)與拋物線(xiàn)交于、兩點(diǎn)(點(diǎn)在軸右側(cè)),連接,當(dāng)四邊形的面積最大時(shí),求點(diǎn)的坐標(biāo)并求出四邊形面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)k值相同時(shí),我們把正比例函數(shù)與反比例函數(shù)叫做“關(guān)聯(lián)函數(shù)”.
(1)如圖,若k>0,這兩個(gè)函數(shù)圖象的交點(diǎn)分別為A,B,求點(diǎn)A,B的坐標(biāo)(用k表示);
(2)若k=1,點(diǎn)P是函數(shù)在第一象限內(nèi)的圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B重合),設(shè)點(diǎn)P的坐標(biāo)為(),其中m>0且m≠2.作直線(xiàn)PA,PB分別與x軸交于點(diǎn)C,D,則△PCD是等腰三角形,請(qǐng)說(shuō)明理由;
(3)在(2)的基礎(chǔ)上,是否存在點(diǎn)P使△PCD為直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AC為對(duì)角線(xiàn),E為AB上一點(diǎn),過(guò)點(diǎn)E作,與AC、DC分別交于點(diǎn)為CG的中點(diǎn),連結(jié)DE、EH、DH、下列結(jié)論: ; ≌; ; 若,則其中結(jié)論正確的有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com