【題目】ABC中,∠A30°,AB6,BC2.則AC的長為_______

【答案】

【解析】

分兩種情況:①當△ABC是銳角三角形時,作CDABD,由含30°角的直角三角形的性質(zhì)得出AC=2CD,設CD=x,則AC=2x,由勾股定理得出AD=x,因此BD=6-x,在Rt△BCD中,由勾股定理得出方程,解方程即可;
②當△ABC不是銳角三角形時,作CDABD,同①在Rt△BCD中,由勾股定理得出方程,解方程即可.

解:分兩種情況:

1)當△ABC是銳角三角形時,

CDABD,如圖1所示:

則∠ADC=BDC=90°,

∵∠A=30°,

AC=2CD,

CD=x,則AC=2x,

由勾股定理得:AD=x,

BD=6-x,

Rt△BCD中,由勾股定理得:CD2+BD2=BC2,

x2+6-x2=2,

解得:x=,或x=(此時BD=0,所以不合題意,舍去),

CD=,

AC=

2)當△ABC不是銳角三角形時,

CDABD,如圖2所示:

則∠ADC=BDC=90°,

同(1)得:CD2+BD2=BC2

x2+x-62=2,

解得:x=(此時BD=-3不合題意,舍去),或x=

CD=,

AC=;

綜上所述:AC的長為

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】雅禮集團某學校教學樓需要在規(guī)定時間內(nèi)建造完成,以備迎接新學期的開學,在工程招標時,接到甲、乙兩個工程隊的投標書如下:(部分信息)

學校后勤處提出兩個方案:①由甲工程隊獨施工;②由乙工程隊單獨施工;

校團委學生代表小組根據(jù)甲、乙兩隊的投標書測算及工期安排,提出了新的方案:

③若甲乙兩隊合做4天,余下的工程由乙隊單獨做也正好如期完成.

試問:(1)學校規(guī)定的期限是多少天?

(2)在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+bk0)的圖象與反比例函數(shù)的圖象相交于A-1,m),Bn-1)兩點,直線ABy軸交于C點,連接OB

1)求一次函數(shù)的表達式;

2)在x軸上找一點P,連接BP,使BOP的面積等于BOC的面積的2倍,求滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某日上午點鐘,市氣象局測得在城市正東方向點有一臺風中心正在以千米/時的速度沿西偏北方向迅速移動(如圖所示).據(jù)資料表明,在距離臺風中心范圍內(nèi)為嚴重影響區(qū)域(假定臺風中心移動方向不變,影響力不變).(參考數(shù)據(jù):,).

(1)市會不會受這次臺風的嚴重影響,為什么;

(2)如果市會受嚴重影響,那么這次臺風對市嚴重影響多長時間?

(3)市規(guī)定臺風嚴重影響前一小時向市民發(fā)出預警警報.如果市會受這次臺風嚴重影響,那么市應在幾點鐘發(fā)出預警警報?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列兩段材料,回答問題:

材料一:點Ax1,y1),Bx2,y2)的中點坐標為(,).例如,點(1,5),(3,﹣1)的中點坐標為(),即(2,2).

材料二:如圖1,正比例函數(shù)l1yk1xl2yk2x的圖象相互垂直,分別在l1l2上取點A,B,使得AOBO.分別過點A,Bx軸的垂線,垂足分別為點CD.顯然,AOC≌△OBD.設OCBDa,ACODb,則A(﹣a,b),Bb,a).于是k1=﹣,k2,所以k1k2的值為一個常數(shù).一般地,一次函數(shù)yk1x+b1,yk2x+b2可分別由正比例函數(shù)l1l2平移得到.

所以,我們經(jīng)過探索得到的結(jié)論是:任意兩個一次函數(shù)yk1x+b1yk2x+b2的圖象相互垂直,則k1k2的值為一個常數(shù).

1)在材料二中,k1k2  (寫出這個常數(shù)具體的值);

2)如圖2,在矩形OBACA4,2),點DOA中點,用兩段材料的結(jié)論,求點D的坐標和OA的垂直平分線l的解析式;

3)若點C與點C關(guān)于OA對稱,用兩段材料的結(jié)論,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直徑為 10cm 的⊙O 中,兩條弦 AB,CD 分別位于圓心的異側(cè),ABCD,且,若 AB=8cm,則 CD 的長為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC 中,AB 為半圓 O 的直徑,AC、BC 分別交半圓 O 于點 E、D,且 BDDE

(1)求證:點 D BC 的中點.

(2)若點 E AC 的中點,判斷ABC 的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)

為何值時,直線與y軸交點在x軸上方?

為何值時,直線不經(jīng)過第一象限?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于 A(﹣1,0),B4,0),C

0,﹣4)三點,點 P 是直線 BC 下方拋物線上一動點.

1 求這個二次函數(shù)的解析式;

2 是否存在點 P,使POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點坐標;若不存在,請說明理由;

3 在拋物線上是否存在點 D(與點 A 不重合)使得 SDBCSABC,若存在,求出點 D的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案